Exercise 1.1Z: Sum of Two Ternary Signals

From LNTwww

Sum S of two
ternary signals  X  and  Y

Let two three-stage message sources  X  and  Y  be given,  whose output signals can only assume the values  10  and  +1  respectively.  The signal sources are statistically independent of each other.

  • A simple circuit now forms the sum signal  S=X+Y.
  • At the signal source  X,  the values  10  and  +1  occur with equal probability.
  • For source  Y,  the signal value  0  is twice as likely as the other two values  1  and  +1, respectively.



Hints:

  • Solve the subtasks  (3)  and  (4)  according to the classical definition.
  • Nevertheless,  consider the different occurrence frequencies of the signal  Y.
  • The topic of this section is illustrated with examples in the (German language) learning video  
    Klassische Definition der Wahrscheinlichkeit  "Classical definition of probability".



Questions

1

What are the probabilities of occurrence of the signal values of  Y?  What is the probability that  Y=0 ?

Pr(Y=0) = 

2

How many different signal values  (I)  can the sum signal  S  assume?  Which are these?

I = 

3

What are the probabilities of the values determined in subtask  (2)?  How probable is the maximum value  Smax?

Pr(S=Smax) = 

4

How do the probabilities change,  if now instead of the sum the difference  D=XY  is considered?  Give reasons for your answer.

The probabilities remain the same.
The probabilities change.  How do they change?


Solution

(1)  Since the probabilities of  ±1  are the same and  Pr(Y=0)=2Pr(Y=1)  holds, we get:

Pr(Y=1)+Pr(Y=0)+Pr(Y=1)=1/2Pr(Y=0)+Pr(Y=0)+1/2Pr(Y=0)=1Pr(Y=0)=0.5_.


Sum and difference of ternary random variables

(2)  S  can take a total of  I=5_  values, namely  0±1  and  ±2.


(3)  Since  Y  is not equally distributed, one cannot (actually) apply the "Classical Definition of Probability" here.

  • However,  if we divide  Y  into four ranges according to the graph,  assigning two of the ranges to the event  Y=0,  we can still proceed according to the classical definition.
  • One then obtains:
Pr(S=0)=4/12=1/3,
Pr(S=+1)=Pr(S=1)=3/12=1/4,
Pr(S=+2)=Pr(S=2)=1/12
Pr(S=Smax)=Pr(S=+2)=1/12=0.0833_.


(4)  It is also evident from the graph that the difference signal  D  and the sum signal  S  take the same values with equal probabilities.

  • This was to be expected,  since  Pr(Y=+1)=Pr(Y=1)  is given   ⇒   Proposed solution 1.