Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.4Z: Sum of Ternary Quantities

From LNTwww

Sum of two ternary variables  x  and  y

Let be given the ternary random variables

x ∈ {–2, \ 0, +2},
y ∈ {–1, \ 0, +1}.
  • These two ternary values each occur with equal probability. 
  • From this,  the sum  s = x + y  is formed as a new random variable.
  • The adjacent scheme shows that the sum  s  can take all integer values between  –3  and  +3 :
s \in \{-3, -2, -1, \ 0, +1, +2, +3\}.




Hints:

  • The topic of this chapter is illustrated with examples in the  (German language)  learning video
Statistische Abhängigkeit und Unabhängigkeit   \Rightarrow   "Statistical dependence and independence".


Questions

1

Calculate the probability that the sum  s  is positive:

{\rm Pr}(s>0) \ = \

2

Calculate the probability that both the input  x  and the sum  s  are positive:

{\rm Pr}\big [(x>0) \cap (s>0)\big] \ = \

3

Calculate the conditional probability that the input variable  x > 0,  when  s > 0  holds:

{\rm Pr}(x>0\hspace{0.05cm}|\hspace{0.05cm}s>0)\ = \

4

Calculate the conditional probability that the sum  s  is positive,  when the input variable is  x > 0 :

{\rm Pr}(s>0\hspace{0.05cm}|\hspace{0.05cm}x>0)\ = \


Solution

Ternary variables in the Venn diagram

In the adjacent graph

  • the three fields belonging to the event  \big[x > 0\big]  are outlined in purple,
  • the fields for  \big[ s > 0\big]  are highlighted in yellow.


All sought probabilities can be determined here with the help of the classical definition.

(1)  This event is marked by the fields with yellow background:

\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.


(2)  The following facts hold here:

\rm Pr \big[(\it x > \rm 0) \cap (\it s>\rm 0) \big ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}.


(3)  Using the results of subtasks  (1)  and  (2),  it follows:

\rm Pr \big[(\it x > \rm 0) \hspace{0.05cm}| \hspace{0.05cm} (\it s > \rm 0)\big] = \frac{{\rm Pr} [(\it x > \rm 0) \cap (\it s > \rm 0)]}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.


(4)  Analogous to subtask  (3)  now holds:

\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr \big[(\it x > \rm 0) \cap (\it s > \rm 0) \big]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.