Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.08: Generator Polynomials for Reed-Solomon

From LNTwww

Four generator matrices, three of which describe Reed-Solomon codes

In the  "Exercise 2.7"  you should determine the code words of the  RSC(7,3,5)8  via a polynomial.  However,  you can also determine the code word  c_   from the information word  u_  and the generator matrix  G  according to the following equation:

\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.
  • Two of these generator matrices describe the  \rm RSC \, (7, \, 3, \, 5)_8.  In the subtask  (1)  is explicitly asked which.
  • Another generator matrix belongs to  \rm RSC \, (7, \, 5, \, 3)_8,  which is considered in subtask  (3).



Hints:

  • Important information about Reed–Solomon codes can also be found in  "Exercise 2.7".



Questions

1

Which of the generator polynomials describe the  \rm RSC \, (7, \, 3, \, 5)_8?

the matrix  \mathbf{G}_{\rm A},
the matrix  \mathbf{G}_{\rm B},
the matrix  \mathbf{G}_{\rm C},
the matrix  \mathbf{G}_{\rm D}.

2

The information sequence starts with  \alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6.  Determine the first code word for the  \rm RSC \, (7, \, 3, \, 5)_8.

It holds  c_0 = \alpha^2,
It holds  c_1 = \alpha^3,
It holds  c_6 = 0.

3

What is the code word for the  \rm RSC \, (7, \, 5, \, 3)_8 given the same sequence of information?

It holds  c_0 = 1,
It holds  c_1 = 0,
It holds  c_6 = \alpha^6.


Solution

(1)  Correct are the  solutions 2 and 3   ⇒   matrices  \mathbf{G}_{\rm B}  and  \mathbf{G}_{\rm C}.

  • In the matrix  \mathbf{G}_{\rm C}  the allowed transformations  \alpha^8 = \alpha, \ \alpha^{10} = \alpha^3  and  \alpha^{12} = \alpha^5  have already been considered.
  • The matrix  \mathbf{G}_{\rm A}  holds for the  (7, \, 5, \, 3)  Hamming code and  \mathbf{G}_{\rm D}  belongs to the  \rm RSC \, (7, \, 5, \, 3)_8.  See subtask  (3)  for more details.


(2)  In the  \rm RSC \, (7, \, 3, \, 5)_8,  in each coding step are processed  k = 3  information symbols,  
in coding step 1 according to the specification the symbols  \alpha^4, \ 1 and \alpha^3.

  • With the generator matrix \mathbf{G}_{\rm C} thus holds:
\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5} \end{pmatrix}\hspace{0.05cm}.
\rm GF(2^3)  representation as powers, polynomials, vectors
  • This results according to the adjacent auxiliary table:
c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 = (110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},
c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= (110) + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},
c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}= (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},
c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$ (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},
c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1} = \alpha^{4} \hspace{0.05cm},
c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}= (110) + (111) + (101) = (100) = \alpha^{2} \hspace{0.05cm},
c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}= (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.
  • You get exactly the same result as in subtask  (4)  of  "Exercise 2.7".  Correct are the  solutions 1 and 2.
  • So it is not  c_6 = 0,  but c_6 = 1.


(3)  At the  \rm RSC \, (7, \, 5, \, 3)_8,  the information word  \underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)  must be considered.

  • With the generator matrix  \mathbf{G}_{\rm D}  one obtains:
\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 & 0 & \alpha^6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^5 & \alpha^2 & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}.
  • From this it follows:
c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 + 0 \cdot 1 + \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) + (101) = (001) = 1 \hspace{0.05cm},
c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} + \alpha^{6}\cdot \alpha^{4}= \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.
  • This takes into account that the bracket expression  [ \ \text{...} \ ]  corresponds exactly to the result  c_1  of subtask  (2).
  • Corresponding is also considered in the following calculations:
c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}= \left [ \alpha^{3} \right ] + \alpha^{7} = (011) + (001) = (010) = \alpha^{1} \hspace{0.05cm},
c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{5}= \left [ 1 \right ] + \alpha^{4}= (001) + (110) = (111) = \alpha^{5} \hspace{0.05cm},
c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4} \right ] + \alpha^{6}\cdot \alpha^{2}= \left [ \alpha^{4} \right ] + \alpha^{1} = (110) + (010) = (100) = \alpha^{2} \hspace{0.05cm},
c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{2} \right ] + \alpha^{6}\cdot \alpha^{6}= \left [ \alpha^{2} \right ] + \alpha^{5} = (100) + (111) = (011) = \alpha^{3} \hspace{0.05cm},
c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{3}= \left [ 1 \right ] + \alpha^{2} = (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.
  • This means:  All proposed solutions  are correct.