Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.2: Binary Bipolar Rectangles

From LNTwww

Binary bipolar rectangular signals

We assume the following signal:

s(t)=+ν=aνgs(tνT).

The basic transmission pulse  gs(t)  is always assumed to be rectangular in this exercise,  with the NRZ format  (blue signal curves in the graph)  as well as the RZ format with duty cycle  TS/T=0.5  (red signal curves)  to be investigated.

The amplitude coefficients have the following properties:

  • They are binary and bipolar:   a_{\nu} \in \{–1, +1\}.
  • The symbols within the sequence  \langle a_{\nu }\rangle  have no statistical ties.
  • The probabilities for the two possible values  ±1  are with  0 < p < 1:
{\rm Pr}(a_\nu = +1) \ = \ p,
{\rm Pr}(a_\nu = -1) \ = \ 1 - p \hspace{0.05cm}.

The three signal sections shown in the graph are valid for  p = 0.75,  p = 0.50  and  p = 0.25.

Throughout this exercise,  reference is made to the following descriptive quantities:

  • m_{a} = \E\big[a_{\nu}\big]  indicates the linear mean  (first order moment)  of the amplitude coefficients.
  • m_{2a} = \E\big[a_{\nu}^{2}\big]  is the power  (second order moment).
  • Thus,  the variance  \sigma_{a}^{2} = m_{2a} - m_{a}^{2}  can also be calculated.
  • The discrete ACF of the amplitude coefficients is  \varphi_{a}(\lambda) = \E\big[a_{\nu} \cdot a_{\nu + \lambda} \big].  It holds here:
\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 \\ m_1^2 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}
  • The energy ACF of the basic transmission pulse is:
\varphi^{^{\bullet}}_{g_s}(\tau) = \left\{ \begin{array}{c} s_0^2 \cdot T_{\rm S} \cdot \left( 1 - {|\tau|}/{T_{\rm S}}\right) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}|\tau| \le T_{\rm S} \\ |\tau| \ge T_{\rm S} \hspace{0.05cm}.\\ \end{array}
  • Thus,  for the total ACF of the transmitted signal,  we obtain:
\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{g_s}(\tau - \lambda \cdot T)\hspace{0.05cm}.
  • The power-spectral density  {\it \Phi}_{s}(f)  is the Fourier transform of the ACF  \varphi_{s}(\tau).


Note:   The exercise belongs to the chapter  "Basics of Coded Transmission".



Questions

1

Which of the three signals shown are redundancy-free?

s_{0.75}(t),
s_{0.50}(t),
s_{0.25}(t),

2

What is the second order moment  ("power")  m_{2a}= \E\big[a_{\nu}^{2}\big]  of the amplitude coefficients as a function of  p?

p = 0.75\text{:} \hspace{0.4cm} m_{2a} \ = \

p = 0.50\text{:} \hspace{0.4cm} m_{2a} \ = \

p = 0.25\text{:} \hspace{0.4cm} m_{2a} \ = \

3

Calculate the first order moment  ("linear mean")  m_{a}= \E\big[a_{\nu}\big]  in relation to  p.

p = 0.75\text{:} \hspace{0.4cm} m_{a} \ = \

p = 0.50\text{:} \hspace{0.4cm} m_{a} \ = \

p = 0.25\text{:} \hspace{0.4cm} m_{a} \ = \

4

What is the variance  \sigma_{a}^{2}  of the amplitude coefficients?

p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \

p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \

p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \

5

Let  p = 0.5  hold initially.  Sketch the ACF  \varphi_{s}(\tau)  for the NRZ and RZ basic transmission pulses and evaluate the following statements:

The ACF is triangular in both cases.
The PSD is  {\rm sinc}^{2}–shaped in both cases.
The PSD area is the same in both cases.
In the case of RZ pulses,  {\it \Phi}_{s}(f)  involves additional Dirac delta functions.

6

Let be  p = 0.75.  Sketch the ACF for the NRZ basic pulse and evaluate the following statements:

The ACF consists of a triangle and a DC component.
The PSD consists of a  {\rm sinc}^{2} component and a Dirac delta function.
The Dirac delta function has the weight  s_{0}^{2}.
With p = 0.25,  the same power-spectral density is obtained.

7

Let be  p = 0.75.  Sketch the ACF for the RZ basic pulse and evaluate the following statements:

Again,  the PSD contains a  {\rm sinc}^{2}–shaped component.
At the same time,  there are still infinitely many Dirac delta lines in the PSD.


Solution

(1)  A digital signal is said to be redundancy-free if

  • the amplitude coefficients do not depend on each other  (this was assumed here),
  • all possible amplitude coefficients are equally probable.


In this sense,  s_{0.5}(t)  is a redundancy-free signal   ⇒   solution 2.

  • Thus,  here the entropy  (the average information content per transmitted binary symbol)  is at most equal to the decision content:
H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/binary\ symbol} \hspace{0.05cm}.
  • In contrast,  the entropies of the other two binary signals are:
H = \ \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4) = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) - \frac{3}{4}\cdot{\rm log}_2 (3) =
\hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) = 0.811 \,\,{\rm bit/binary\ symbol} \hspace{0.05cm}.
  • From this,  the relative redundancy of these signals is:
r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.


(2)  The second order moment  ("power")  is equal to  m_{2a} = 1  independent of  p:

m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.


(3)  For the first order moment  ("linear mean")  we get:

m_{a}={\rm E}[a_\nu] = p \cdot (+1) + (1-p)\cdot (-1) = 2 p -1 \hspace{0.05cm}.
\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.


(4)  Using the results from  ( (2)  and  (4),  we obtain:

p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},
p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},
p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75}.


ACF with equal symbol probabilities

(5)  Only the  first two statements  are correct:

  • For  p = 0.5,   \varphi_{a}(\lambda = 0) = 1  and  \varphi_{a}(\lambda \neq 0) = 0.  It follows that:
\varphi_s(\tau) = \frac{1}{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau )\hspace{0.05cm}.
  • This results in a triangular ACF and a  {\rm sinc}^{2}–shaped PSD for both the NRZ and RZ basic pulses.
  • The area under the PSD is smaller by a factor of  T_{\rm S}/T  for the RZ pulse than for the NRZ pulse, 
    since the ACF values also differ by this factor at  \tau = 0.
  • The PSD is continuous in both cases because the ACF does not contain a DC component or periodic components.


ACF with unequal symbol probabilities

(6)  All statements except the third  are correct:

  • For  p = 0.75,   the ACF \varphi_{s}(\tau) is composed of infinitely many triangular functions,  all of which have the same height  s_{0}^{2}/4  except for the middle triangle around  \tau = 0.
  • According to the sketch,  one can combine all these triangle functions into a DC component of height  m_{a}^{2} \cdot s_{0}^{2} = s_{0}^{2}/4  and a single triangle around  \tau = 0  with height  \sigma_{a}^{2} \cdot s_{0}^{2} = 3/4 · s_{0}^{2}.
  • In the PSD,  this leads to a continuous  {\rm sinc}^{2}–shaped component and a Dirac delta function at  f = 0.  The weight of this Dirac is  s_{0}^{2}/4.
  • For  p = 0.25  we get the same ACF as with  p = 0.75,  since both the second order moment  m_{2a} = 1  and  m_{a}^{2} = 0.25  coincide.  Thus,  of course,  the power-spectral densities also match.


ACF for RZ rectangular pulses

(7)  Both proposed solutions are correct::

  • With the RZ duty cycle  T_{\rm S}/T = 0.5  the sketched ACF is obtained,  which can also be represented by a periodic triangular function of height  s_{0}^{2}/8  (red filling)  and a single triangular pulse of height  3/8 \cdot s_{0}^{2}  (green filling).
  • This non-periodic component leads to a continuous-valued,  {\rm sinc}^{2}–shaped PSD with zeros at multiples of  2/T.
  • The periodic triangular ACF causes Dirac delta functions in the PSD at multiples of  1/T.
  • However,  due to the antimetry of the periodic component,  the Dirac delta functions at multiples of  2/T  each have weight  0.
  • The weights of the Dirac delta functions at distance  1/T  are proportional to the continuous PSD component.