Processing math: 100%

Exercise 2.4: GF(2 to the Power of 2) Representation Forms

From LNTwww

Three representation forms for  GF(22)

Opposite you can see the addition table as well as the multiplication table for the extension field  GF(22)  in three different variants:

  • the  polynomial representation,
  • the  coefficient vector representation,
  • the  exponent representation.



Hints:

  • All necessary information about  GF(22)  can be found on the  "first page"  of this chapter.
  • In subtask  (4)  the following expressions are considered:
A=z2z2+z2z3+z3z3,
B=(z0+z1+z2)(z0+z1+z3).



Questions

1

What characteristics can be recognized from the polynomial representation?

The elements  "α"  and  "1+α"  are neither  0  nor  1.
The arithmetic operations are performed modulo  2.
The arithmetic operations are performed modulo  4.
One recognizes the result   α2+α+1=0   from the addition table.
One recognizes the result   α2+α+1=0   from the multiplication table.

2

What is the relationship between the coefficient vector and the polynomial representation?
Let  k0{0,1}  and  k1{0,1} hold.

"(k0 k1)"  refers to the element  "k1α+k0".
"(k1 k0)"  refers to the element  "k1α+k0".
There is no relationship between the two representations.

3

How are polynomial and exponent representation related?

No connections can be seen.
The elements  "0, 1"  and  "α"  are the same in both representations.
The element  "1+α"  is  "α2"  in the exponent representation.
The element  "α2"  of the exponent representation stands for  "α(1+α)".

4

Calculate the expressions  A  and  B  according to these three forms of representation.  Which statements are true?

It holds  A=z0,
It holds  A=z2,
It holds  B=z1,
It holds  B=z3.


Solution

(1)  The  proposed solutions 1, 2 and 5  are applicable.  Justification:

  • If  α=0  or  α=1,  the pseudo element  α  would be indistinguishable from the other two  GF(2)  elements  0  and  1.
  • The modulo-2 calculation can be recognized from the addition table.  For example,  1+1=0, α+α=0, (1+α)+(1+α)=0, etc.
  • From the multiplication table we see that  α2=αα=1+α  holds  (3rd row,  3rd column).  Thus also
α2+α+1=0.


(2)  Correct is the  solution suggestion 2.  Thus

  • "01"  for the element  "1"  and
  • "10"  for the element  "α".



(3)  Correct are the  solutions 2 and 3:

  • It is true that  α0=1  and  α1=α.
  • For the underlying polynomial  p(x)=x2+x+1,  it follows further from  p(α)=0:
α2+α+1=0α2=α+1.


(4)  According to the tables of polynomial representation holds:

A = z2z2+z2z3+z3z3=αα+α(1+α)+(1+α)(1+α)=(1+α)+(1)+(α)=0=z0,
B = (z0+z1+z2)(z0+z1+z3)=(0+1+α)(0+1+1+α)=(1+α)α=1=z1.
  • Therefore,  the  proposed solutions 1 and 2  are correct.
  • The same results are obtained with the coefficient vector representation:
A = z2z2+z2z3+z3z3=(10)(10)+(10)(11)+(11)(11)=(11)+(01)+(10)=(00)=0=z0,
B = (z0+z1+z2)(z0+z1+z3)=[(00)+(01)+(10)][(00)+(01)+(11)]=(11)(10)=(01)=z1.
  • And finally with the exponent representation:
A = z2z2+z2z3+z3z3=α1α1+α1α2+α2α2=α2+α3+α4=α2+α0+α1=0=z0,
B = (z0+z1+z2)(z0+z1+z3)=[0+α0+α1][0+α0+α2]=α2α1=α3=α0=z1.