Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.7: Bit Error Rate (BER)

From LNTwww

To illustrate the bit error rate

We consider a binary transmission system with

  • the source symbol sequence  qν,  and
  • the sink symbol sequence  vν.


If the sink symbol  vν  and source symbol  qν  do not match,  there is a  "bit error"   ⇒   eν=1.  Otherwise  eν=0  holds.


(A)  The most important evaluation criterion of such a digital system is the  Bit Error Probability:

  • With the expected value  E[ ...]  this is defined as follows:
pB=E[Pr(vνqν)]=E[Pr(eν=1)]=lim
  • The right part of this equation describes a time averaging; this must always be applied to time-varying channels.
  • If the error probability is the same for all symbols  (which is assumed here),  the above equation can be simplified:
\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].
  • The bit error probability is an  "a priori parameter",  so it allows a prediction for the expected result.


\rm (B)  For the metrological determination of the transmission quality or for a system simulation,  it is necessary to rely on the  Bit Error Rate  \rm (BER):

  • The bit error rate is an  "a posteriori parameter"  derived from a performed statistical experiment as a  relative frequency.
h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.
  • n_{\rm B}  indicates the number of bit errors occurred when a total of  N  binary symbols  ("bits")  were transmitted.
  • In the limiting case  N \to \infty  the relative frequency  h_{\rm B}  coincides with the probability  p_{\rm B}.  Here now the question shall be clarified,  which statistical uncertainty has to be expected with finite  N.



Hints:

  • The exercise belongs to the chapter  Gaussian random variables.
  • Solve this exercise as far as possible in general.  Use the parameter values  p_{\rm B} = 10^{-3}  and  N = 10^{5} for control input.
  • The following are some values of the so-called  "Q-function":
\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.



Questions

1

Which of the following statements are true?

For  n_{\rm B}  all values  (0, ... , N)  are equally likely.
The random variable  n_{\rm B}  is binomially distributed.
With  p_{\rm B} = 10^{-3}  and  N = 10^{5}  we get  {\rm E}\big[n_{\rm B}\big] = 100.

2

How large is the standard deviation of the random variable  n_{\rm B}  with  p_{\rm B} = 10^{-3}  and  N = 10^{5}?

\sigma_{n{\rm B}} \ = \

3

What values can the bit error rate  h_{\rm B}  take?  Show that the linear mean  m_{h{\rm B}}  of this random variable is equal to the bit error probability  p_{\rm B}  What is its standard deviation?

\sigma_{h{\rm B}} \ = \

4

Under certain conditions,  a binomially distributed random variable can be approximated by a Gaussian distribution
with equal mean  (m_{h{\rm B}})  and equal standard deviation  (\sigma_{h{\rm B}}).  Which statement is true?

{\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).
{\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{\it h}{\rm B}}).

5

For abbreviation,  we use the confidence level  p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon).   Which  p_\varepsilon  results with  \varepsilon = 10^{-4},   p_{\rm B} = 10^{-3}  and  N = 10^{5} ?

p_\varepsilon \ = \

6

Let the argument of the Q-function be  \alpha.  What is the minimum value of  \alpha  that must be chosen for the confidence level  p_\varepsilon = 95\% ?

\alpha_{\rm min} \ = \

7

It still holds  p_{\rm B} = 10^{-3}  and  p_\varepsilon = 95\%.   Over how many symbols  (N_\text{min})  must be averaged at least,
so that the determined bit error rate lies in the range between  0. 9 \cdot 10^{-3}  and  1.1 \cdot 10^{-3}  (\varepsilon = 10^{-4}, \ \text{10% of its nominal value)} ?

N_\text{min} \ = \


Solution

(1)  The  last two statements  are true:

  • Relative to the random variable  n_{\rm B}  there is the classical case of a binomial distribution.
  • The sum over  N  binary random variables is formed.  The possible values of  n_{\rm B}  thus lie between  0  and  N.
  • The linear mean gives   m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.


(2)  Für the standard deviation of the binomial distribution holds with good approximation:

\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.


(3)  Possible values of  h_{\rm B}  are all integer multiples of  1/N.  These all lie between  0  and  1.

  • For the mean value,  one obtains:
m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.
  • The standard deviation results in
\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.


(4)  Correct is  the first proposition.  It holds:

{\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),
\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}
\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).


(5)  One obtains with the numerical values  \varepsilon = \sigma_{h{\rm B}} = 10^{-4}:

p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.

In words:   If one determines the bit error rate by simulation over  10^5  symbols,  with a confidence level of  \underline{68.4\%} 
one obtains a value between  0.9 \cdot 10^{-3}  and  1.1 \cdot 10^{-3},  if  p_{\rm B} = 10^{-3}.


(6)  From the relation  p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95  it follows directly:

\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.


(7)  It must  \alpha = \varepsilon/\sigma_{h{\rm B}}.  With the result of the subtask  (2)  then follows:

\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.