We consider a binary transmission system with
- the source symbol sequence ⟨qν⟩, and
- the sink symbol sequence ⟨vν⟩.
If the sink symbol vν and source symbol qν do not match, there is a "bit error" ⇒ eν=1. Otherwise eν=0 holds.
(A) The most important evaluation criterion of such a digital system is the Bit Error Probability:
- With the expected value E[ ...] this is defined as follows:
- pB=E[Pr(vν≠qν)]=E[Pr(eν=1)]=lim
- The right part of this equation describes a time averaging; this must always be applied to time-varying channels.
- If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
- \it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].
- The bit error probability is an "a priori parameter", so it allows a prediction for the expected result.
\rm (B) For the metrological determination of the transmission quality or for a system simulation, it is necessary to rely on the Bit Error Rate \rm (BER):
- The bit error rate is an "a posteriori parameter" derived from a performed statistical experiment as a relative frequency.
- h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.
- n_{\rm B} indicates the number of bit errors occurred when a total of N binary symbols ("bits") were transmitted.
- In the limiting case N \to \infty the relative frequency h_{\rm B} coincides with the probability p_{\rm B}. Here now the question shall be clarified, which statistical uncertainty has to be expected with finite N.
Hints:
- The exercise belongs to the chapter Gaussian random variables.
- Solve this exercise as far as possible in general. Use the parameter values p_{\rm B} = 10^{-3} and N = 10^{5} for control input.
- The following are some values of the so-called "Q-function":
- \rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.
Questions
Solution
- Relative to the random variable n_{\rm B} there is the classical case of a binomial distribution.
- The sum over N binary random variables is formed. The possible values of n_{\rm B} thus lie between 0 and N.
- The linear mean gives m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.
(2) Für the standard deviation of the binomial distribution holds with good approximation:
- \sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.
(3) Possible values of h_{\rm B} are all integer multiples of 1/N. These all lie between 0 and 1.
- For the mean value, one obtains:
- m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.
- The standard deviation results in
- \sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.
(4) Correct is the first proposition. It holds:
- {\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),
- \rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}
- \Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).
(5) One obtains with the numerical values \varepsilon = \sigma_{h{\rm B}} = 10^{-4}:
- p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.
In words: If one determines the bit error rate by simulation over 10^5 symbols, with a confidence level of \underline{68.4\%}
one obtains a value between 0.9 \cdot 10^{-3} and 1.1 \cdot 10^{-3}, if p_{\rm B} = 10^{-3}.
(6) From the relation p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95 it follows directly:
- \alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.
(7) It must \alpha = \varepsilon/\sigma_{h{\rm B}}. With the result of the subtask (2) then follows:
- \frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.