Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.11Z: OOK and BPSK once again

From LNTwww

Error probabilities of On–Off Keying and Binary Phase Shift Keying

The error probabilities  pS  of the digital modulation methods "On–Off Keying"  (OOK)  and  "Binary Phase Shift Keying"  (BPSK)  are given here without derivation. 

For example,  one obtains with the so-called Q-function

Q(x)=12π+xeu2/2du

for the AWGN channel – identified by  ES/N0  – and other optimal conditions  (e.g. coherent demodulation)

  • for On–Off Keying,  often also called  "Amplitude Shift Keying"  \rm (2–ASK):
p_{\rm S} = {\rm Q}\left ( \sqrt{{E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right ) \hspace{0.05cm},
  • for Binary Phase Shift Keying:
p_{\rm S} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right ) \hspace{0.05cm}.


These symbol error probabilities  (at the same time the bit error probabilities)  are shown in the graph.

For example,  for  10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB  one obtains according to the exact functions:

p_{\rm S} = 7.83 \cdot 10^{-4}\,\,{\rm (OOK)}\hspace{0.05cm},
p_{\rm S} = 3.87 \cdot 10^{-6}\,\,{\rm (BPSK)}\hspace{0.05cm}.

In order to achieve  p_{\rm S} = 10^{\rm -5}  with BPSK,  10 \cdot {\rm lg} \, E_{\rm S}/N_0 ≥ 9.6 \ \rm dB  must hold.


Notes:

  • For the complementary Gaussian error function, use the following approximation  (upper bound):
{\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.


Questions

1

Calculate the  OOK  symbol error probability for  10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB  using the upper bound.

p_{\rm S}\ = \

\ \cdot 10^{\rm –5}

2

What is the  BPSK  symbol error probability for  10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB?

p_{\rm S}\ = \

\ \cdot 10^{\rm –5}

3

For  OOK,  give the minimum value of  E_{\rm S}/N_0  (in \rm dB)  required for  p_{\rm S} = 10^{\rm -5}.

{\rm Minimum} \big[10 \cdot {\rm lg} \, E_{\rm S}/N_0 \big ] \ = \

\ \rm dB


Solution

(1)  From  10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB  follows  E_{\rm S}/N_0 = 10  and thus

p_{\rm S} = {\rm Q}\left ( \sqrt{10} \right ) \approx \frac{\rm 1}{\sqrt{\rm 20\pi} }\cdot \rm e^{-5 } \underline{=85 \cdot 10^{-5}}\hspace{0.05cm}.
  • The actual value according to the data section is  78.3 \cdot 10^{\rm -5}.
  • So the given equation is actually an upper bound for  {\rm Q}(x).
  • The relative error when using this approximation instead of the exact function  {\rm Q}(x)  is in this case less than  10\%.


(2)  For BPSK,  the corresponding equation is:

p_{\rm S} = {\rm Q}\left ( \sqrt{20} \right ) \approx \frac{\rm 1}{\sqrt{\rm 40\pi} }\cdot \rm e^{-10 } \underline{=0.405 \cdot 10^{-5}}\hspace{0.05cm}.
  • Now the relative error using the approximation is only  5\%.
  • In general:  The smaller the error probability, the better the approximation.


(3)  According to the specification,  a (logarithmic) value of  9.6 \ \rm dB  is required for BPSK.

  • With the OOK,  the logarithmic value must be increased by about  3 \ \rm dB10 \cdot {\rm lg} \, E_{\rm S}/N_0 \ \underline {\approx 12.6 \ \rm dB}.