Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.2: DC Component of Signals

From LNTwww
Revision as of 18:30, 17 May 2021 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Square wave signal with/ without DC component

The graph shows six time signals defined for all times (from    to  +).  For all sample signals  xi(t)  the associated spectral function can be written as:

Xi(f)=A0δ(f)+ΔXi(f).

Here:

  • A0  is the DC component of the signal.
  • ΔXi(f)  is the spectrum of the residual signal reduced by the DC component: 
Δxi(t)=xi(t)A0.


Hint:



Questions

1

Which of the signals contains a DC component, i.e. for which signals is   A00?

Signal  x1(t),
signal  x2(t),
signal  x3(t),
signal  x4(t),
signal  x5(t),
signal  x6(t).

2

For which of the signals is the „residual spectrum”  ΔXi(f)=0?

Signal  x1(t),
signal  x2(t),
signal  x3(t),
signal  x4(t),
signal  x5(t),
signal  x6(t).

3

What is the DC component of the signal  x3(t)?

x3(t):A0 = 

  V

4

What is the DC component of the signal  x4(t)?

x4(t):A0 = 

  V

5

What is the DC component of the signal  x6(t)?

x6(t):A0 = 

  V


Solution

(1)  The correct answers are 1, 3, 4, 5 and 6.

  • All signals except  x2(t)  contain a DC signal component.


(2)  Only solution 5 is correct:

  • If the DC component   1V is subtracted from the signal   x5(t),  the residual signal  Δx5(t)=x5(t)1V  is zero.
  • Accordignly, the spectral function is  ΔX5(f)=0.
  • For all other time courses  \Delta x_i(t)ßne 0  and thus the associated spectral function   \Delta X_i(f)\ne 0,  too.


(3)  Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component  A_0 .

  • For signal  x_3(t)  the period duration is  T_0 = 3\,\text{ms}.  This results in the required DC component:A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] \hspace{0.15cm}\underline{=-0.333\,V}.


(4)  The signal  x_4(t)  can be written as:  x_4(t) = 0.5 \,{\rm V} + Δx_4(t).

  • Here  Δx_4(t)  denotes a rectangular pulse with amplitude  0.5 \,{\rm V}   and duration  4 \,{\rm ms} ,
  • which due to its finite duration does not contribute to the DC signal component.
  • Therefore  A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}} applies here.


(5)  The general equation for calculating the DC signal component is:

A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.
  • If one splits this integral into two partial integrals, one obtains:
A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.
  • Only the second term makes a contribution.  From this follows again :  A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}.