Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.6: k-parameters and alpha-parameters

From LNTwww
Revision as of 18:11, 23 November 2021 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Attenuation function per unit length,
valid for  "copper twin wire"  (0.5 mm)

For symmetrical copper twisted pairs,  the following empirical formula can be found in  [PW95],  which is valid for the frequency range  0f30 MHz:

αI(f)=k1+k2(f/f0)k3,f0=1MHz.

In contrast,  the attenuation function per unit length of a coaxial cable is usually given in the following form:

αII(f)=α0+α1f+α2f.

Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters  α0,  α1  and  α2  instead of the representation with  k1,  k2  and  k3.

For the conversion,  one proceeds as follows:

  • From above equations,  it is obvious that the coefficient characterizing the DC signal attenuation is  α0=k1.
  • To determine  α1  and  α2,  it is assumed that the mean square error should be minimum in the range of a given bandwidth  B:
E[ε2(f)]=B0[αII(f)αI(f)]2dfMinimum.
  • The difference  ε2(f)  and the mean square error  E[ε2(f)]  are obtained as follows:
ε2(f)=[α1f+α2fk2(f/f0)k3]2=α21f2+2α1α2f1.5+α21f+k22f2k3f2k302k2α1fk3+1fk302k2α2fk3+0.5fk30
E[ε2(f)]=α21B33+45α1α2B2.5+α21B22+k222k3+1B2k3+1f2k302k2α1k3+2
This equation contains the cable parameters  α1,  α2,  k2  and  k3  to be calculated as well as the bandwidth  B,  within which the approximation should be valid.
  • By setting the derivatives of  E[ε2(f)]  to  α1  and  α2  to zero, two equations are obtained for the best possible coefficients  α1  and  α2 that minimize the mean square error. These can be represented in the following form:
dE[ε2(f)]dα1=0α1+C1α2+C2=0,
dE[ε2(f)]dα2=0α1+D1α2+D2=0.
  • From the equation  C1α2+C2=D1α2+D2,  the coefficient  α2  can be calculated and then the coefficient  α1 can be calculated from each of the two equations above.


The graph shows the attenuation function per unit length for a copper twin wire with  0.5 mm  diameter, whose  k–parameters are:

k1=4.4dB/km,k2=10.8dB/km,k3=0.60.
  • The red curve shows the function  α(f)  calculated with this parameters.  For  f=30 MHz  the attenuation function per unit length is  α(f)=87.5 dB/km.
  • The blue curve gives the approximation with the  α–coefficients.  This is almost indistinguishable from the red curve within the drawing accuracy.



Notes:

  • You can use the  (German language)  interactive SWF applet  "Dämpfung von Kupferkabeln"  ⇒   "Attenuation of copper cables" .
  • [PW95]  denotes the following literature reference:   Pollakowski, P.; Wellhausen, H.-W.:  Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz.  Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.


Questions

1

Calculate the parameters  C1  and  C2  of the equation  α1+C1α2+C2=0  resulting from the derivative  dE[...]/dα1
Which results are correct?

C1=6/5B0.5,
C1=5/4B0.5,
C1=4/3B2,
C2=4/3B2$,
C2=5/2k2/(k3+1.5)Bk31fk30,
C2=3k2/(k3+2)Bk31fk30.

2

Calculate the parameters  D1  and  D2  of the equation  α1+D1α2+D2=0  resulting from the derivative  dE[...]/dα2
Which results are correct?

D1=6/5B0.5,
D1=5/4B0.5,
D1=4/3B2,
D2=4/3B2,
D2=5/2k2/(k3+1.5)Bk31fk30,
D2=3k2/(k3+2)Bk31fk30.

3

Calculate the coefficients  α1  and  α2  for the given  k2  and  k3.
Which of the following statements are true?

For  k3=1.0,   α1=k2/f0  and  α2=0.
For  k3=0.5,   α1=0  and  α2=k2/f0.50.

4

Determine the coefficients  α1  and  α2  numerically for the approximation bandwidth  B=30 MHz.

α1 = 

 dB/(km  MHz)
α2 = 

 dB/(km  MHz)

5

Using the  α–parameters,  calculate the attenuation function per unit length for the frequency  f=30 MHz.

αII(f=30 MHz) = 

 dB/km


Solution

(1)  Solutions 1 and 6  are correct:

  • The derivative of the given expected value with respect to  α1  gives:
dE[ε2(f)]dα1=23B3α1+45B2.5α22k2k3+2Bk3+2fk30=0.
  • By setting it to zero and dividing by  2B2/3,  we obtain:
α1+65B0.5α23k2k3+2Bk31fk30=0C1=65B0.5,C2=3k2k3+2Bk31fk30.


(2)  Solutions 2 and 5  are correct:

  • Using the same procedure as in subtask  (1),  we obtain:
dE[ε2(f)]dα2=45B2.5α1+B2α22k2k3+1.5Bk3+1.5fk30=0
α1+54B0.5α22.5k2k3+1.5Bk31fk30=0D1=54B0.5,D2=2.5k2k3+1.5Bk31fk30.


(3)  Both solutions  are correct:

  • From  C1α2+C2=D1α2+D2  we obtain a linear equation for  α2.  With the result from  (2)  we can write:
α2=D2C2C1D1=2.5k2k3+1.5Bk31fk30+3k2k3+2Bk31fk306/5B0.55/4B0.5=2.5k2(k3+2)+3k2(k3+1.5)(6/55/4)(k3+1.5)(k3+2)Bk30.5fk30
α2=10(B/f0)k30.51k3(k3+1.5)(k3+2)k2f0.
  • For the parameter   α1  then holds:
α1=C1α2C2=65B0.510(B/f0)k30.51k3(k3+1.5)(k3+2)k2f0+3k2k3+2Bk31fk30
α1=(B/f0)k3112(1k3)+3(k3+1.5)(k3+1.5)(k3+2)k2f0α1=15(B/f0)k31k30.5(k3+1.5)(k3+2)k2f0.
  • Regardless of the bandwidth,  we obtain for  k3=1:
α1=(B/f0)k3115(k30.5)(k3+1.5)(k3+2)k2f0=150.52.53k2f0=k2/f0_,
α2=(B/f0)k30.510(1k3)(k3+1.5)(k3+2)k2f0=0_.
  • In contrast,  for  k3=0.5:
α1=(B/f0)k3115(k30.5)(k3+1.5)(k3+2)k2f0=0_,
α2=(B/f0)k30.510(1k3)(k3+1.5)(k3+2)k2f0=100.522.5k2f0=k2/f0_.


(4)  For the two coefficients, with  k2=10.8 dB/kmk3=0.6 dB/km  and  B/f0=30:

α1=(B/f0)k3115(k30.5)(k3+1.5)(k3+2)k2f0=300.4150.12.12.610.8dB/km1MHz0.761dB/(kmMHz)_,
α2=(B/f0)k30.510(1k3)(k3+1.5)(k3+2)k2f0=k2f0=300.1100.42.12.610.8dB/km1MHz0.511.1dB/(kmMHz)_.


(5)  According to the given equation  αII(f)  thus also holds:

αII(f=30MHz)=α0+α1f+α2f=[4.4+0.76130+11.130]dBkm88.1dB/km_.