Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.6Z: Ergodic Probabilities

From LNTwww
Revision as of 19:07, 1 December 2021 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Markov chain with  AB

We consider a homogeneous stationary first-order Markov chain with events  A  and  B  and transition probabilities corresponding to the adjacent Markov diagram:

For subtasks  (1)  to  (4),  assume:

  • Event  A  is followed by  A  and  B  with equal probability.
  • After  B:  The event  A  is twice as likely as  B.


From subtask  (5)  on,  p  and  q  are free parameters,  while the ergodic probabilities  Pr(A)=2/3  and  Pr(B)=1/3  are fixed.




Hints:

  • You can check your results with the   (German language)  interactive SWF applet
Ereigniswahrscheinlichkeiten einer Markov-Kette erster Ordnung   ⇒   "Event Probabilities of a First Order Markov Chain".


Questions

1

What are the transition probabilities  p  and  q?

p = 

q = 

2

Calculate the ergodic probabilities.

Pr(A) = 

Pr(B) = 

3

What is the conditional probability that event  B  occurs if event  A  occurred two steps before?

Pr(Bν|Aν2) = 

4

What is the inferential probability that event  A  occurred two steps before,  when event  B  currently occurs?

Pr(Aν2|Bν) = 

5

Let now  p=1/2  and  Pr(A)=2/3.  Which value results for  q?

q = 

6

How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  Pr(A)=2/3 ?

p = 

q = 


Solution

(1)  According to the instruction,   p=1p   ⇒   p=0.500_  and  q=(1q)/2,   ⇒   q=0.333_  holds.


(2)  For the event probability of  A  holds:

Pr(A)=Pr(A|B)Pr(A|B)+Pr(B|A)=1q1q+1p=2/32/3+1/2=470.571_.
  • This gives  Pr(B)=1Pr(A)=3/70.429_.



(3)  No statement is made about the time  ν1 . 

  • At this time  A  or  B  may have occurred. Therefore holds:
Pr(Bν|Aν2)=Pr(A|A)Pr(B|A)+Pr(B|A)Pr(B|B)=p(1p)+q(1p)=5/120.417_.


(4)  According to Bayes' theorem:

Pr(Aν2|Bν)=Pr(Bν|Aν2)Pr(Aν2)Pr(Bν)=5/124/73/7=5/90.556_.

Reasoning:

  • The probability  Pr(Bν|Aν2)=5/12  has already been calculated in subsection  (3).
  • Due to stationarity,  Pr(Aν2)=Pr(A)=4/7  and  Pr(Bν)=Pr(B)=3/7  holds.
  • Thus,  the value of  5/9 is obtained for the sought inference probability according to the above equation.


(5)  According to subtask  (2)  with  p=1/2  for the probability of  A  in general:

Pr(A)=1q1.5q.
  • Thus from  Pr(A)=2/3  follows  q=0_.


(6)  In the case of statistical independence,  for example,  it must hold:

Pr(A|A)=Pr(A|B)=Pr(A).
  • From this follows  p=Pr(A)=2/3_  and accordingly  q=1p=1/3_.