Processing math: 100%

Exercise 4.13Z: AMI Code

From LNTwww
Revision as of 18:33, 25 March 2022 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Auto-correlation functions at the input and output of AMI coding

For spectral adaptation  (shaping)  of a digital signal to the characteristics of the channel,  one uses so-called  "pseudo-ternary codes".  With these codes,  the binary source symbol sequence  qν  is converted to a sequence  cν  of ternary symbols according to a fixed rule:

qν{1,+1}cν{1,0,+1}.

The best known representative of this code class is the AMI code  (from  "Alternate Mark Inversion").  Here

  • the binary value  qν=1  is always mapped to  cν=0 ,
  • while  qν=+1  is alternately represented by the ternary values  cν=+1  and  cν=1.


By convention,  the ternary symbol  cν=+1  shall be selected at the first occurrence of  qν=+1 .

It is further assumed that

  • the two possible source symbols are each equally probable and
  • the source symbol sequence  qν has no internal statistical bindings.


Thus,  all discrete ACF values are zero except  φq(k=0):

φq(kT)=0ifk0.

Here  T  denotes the time distance between the source symbols. Use  T=1µs. The code symbols have the same spacing.

The graphic shows the given auto-correlation functions.  Please note:

  • In red are respectively the discrete-time representations  A{φq(τ)}  and  A{φc(τ)}  of the auto-correlation functions,  each with the reference value  T.
  • The functions shown in blue indicate the continuous-time progressions  φq(τ)  and  φc(τ)  of the ACF,  assuming square-wave pulses.




Hints:

  • This exercise belongs to the chapter  Power-Spectral Density.
  • Reference is also made to the chapter  Auto-Correlation Function  as well as to the page  Numerical PSD determination.
  • Use the following Fourier correspondence, where  Δ(t)  denotes a triangular pulse symmetric about  t=0  with  Δ(t=0)=1  and  Δ(t)=0  for  |t|T:
Δ(t)Tsi2(πfT).


Questions

1

What is the discrete ACF value of the source symbols for  k=0?

φq(k=0) = 

2

Which statements are valid for the PSD functions  Φq(f)  and  P{Φq(f)}?

P{Φq(f)}  is a constant for all frequencies.
Φq(f)  is constant for  |fT|<0.5  and outside zero.
Φq(f)  is  sinc2-shaped.

3

The source symbol sequence is  qν=+1,1,+1,+1,1,+1,+1,1,1,1.
What are the code symbols  cν ? Enter the code symbol  c6 .

c6 = 

4

What is the discrete ACF value of the code symbols for  k=0.

φc(k=0) = 

5

Calculate the ACF values  φc(k=+1)  and  φc(k=1).

φc(k=+1) = 

φc(k=1) = 

6

What power-spectral density  Φc(f)  results for frequencies f=0  and f=500kHz.  
Note:   For  |k|2   ⇒   all ACF–values  φc(k)=0.

Φc(f=0) = 

 106 1/Hz
Φc(f=500kHz) = 

 106 1/Hz


Solution

(1)  The discrete ACF value for  k=0  gives the variance of the source symbols.

  • Since  qν  can only take the values  1  and  +1   ⇒   φq(k=0)=1_.


(2)  Correct are the proposed solutions 1 and 3:

  • The discrete-time ACF and its Fourier transform are:
A{φq(τ)}=φq(k=0)Tδ(τ)P{Φq(f)}=φq(k=0)T=T.
  • It is considered that  φq(k=0)=σ2q=1.  This means:   The periodic continuation of  P{Φq(f)}  thus gives the same value for all frequencies.
  • In contrast, the continuous-time ACF can be represented as follows:  
φq(τ)=A{φq(τ)}(δ(τ)/T).
  • The associated power-spectral density  (Fourier transform of the ACF)  is then the product of the Fourier transforms of the two convolution terms:  
Φq(f)=P{Φq(f)}sinc2(fT)=Tsinc2(fT).
  • Based on the chosen ACF interpolation  (with straight line intercepts)  from their samples, a  sinc2-shaped PSD is obtained.
  • A rectangular spectrum according to the second proposed solution would only occur with  sinc-shaped interpolation.


(3)  The coded sequence is:   +1, 0,1,+1, 0,1,+1, 0, 0, 0.  Thus the 6th code symbol is  c6=1_.


(4)  The occurrence probabilities of the values  1,    0   and  +1  are  0.25,0.5,0.25.  It follows:

φc(k=0)=0.25(1)2+0.502+0.25(+1)2=0.5_.


(5)  For the ACF value at  k=1  consider the product  cνcν+1.  The combinations shown in the table are obtained.

  • Only products  cνcν+10  with  Pr[cνcν+1]0:
φc(k=1)=Pr[(cν=+1)(cν+1=1)](+1)(1)+Pr[(cν=1)(cν+1=+1)](1)(+1).
For ACF calculation of AMI code
  • In the table,  these terms are marked in red.  Further:
Pr[(cν=+1)(cν+1=1)]=
=Pr(cν=+1)Pr(cν+1=1|cν=+1))=1412=18.
It is assumed that  +1  occurs with probability  0.25  and is followed by  1  only in half of the cases.
  • The same result is obtained for the second contribution. Thus applies:
φc(k=1)=18(+1)(1)+18(1)(+1)=0.25_.
φc(k=1)=φc(k=1)=0.25_.
  • To calculate  φc(k=2)  it is necessary to average over  33=27  combinations. The result is zero.


(6)  The Fourier transform of the discrete-time ACF  A{φc(τ)}  is:

P{Φc(f)}=Tφc(k=0)+2Tφc(k=1)cos(2πfT).
  • With the result of the last subtask,  it follows:
P{Φc(f)}=T2(1cos(2πfT))=Tsin2(πfT).
  • As shown in item  (2):  For the PSD – that is, the Fourier transform of  φc(τ):
Φc(f)=Tsin2(πfT)sinc2(fT)=Tsin4(πfT)(πfT)2.
Φc(f=0)=0_,Φc(f=500kHz)=Tsin4(π/2)(π/2)2=4Tπ2=0.405106 1/Hz_.