Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.14: ACF and CCF for Square Wave Signals

From LNTwww
Revision as of 18:57, 26 March 2022 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ACF and CCF for rectangular signals

We consider a periodic square wave signal  p(t)  corresponding to the top sketch with the two possible amplitude values  0V  and  1V  and the rectangle duration  T.  Thus, the period duration is  T0=2T.

Below this is drawn the random signal  z(t):

  • This is  z(t)=0V  between  (2i1)T  and  2iT  respectively   (highlighted in red in the figure).
  • In the intervals drawn in blue between  2iT  and  (2i+1)T  the signal value is two-point distributed  (±1V).


The probability that in the intervals shown in blue  z(t)=+1V  holds is generally equal  p  and independent of the previously selected values.

The lowest signal in the adjacent graph can be constructed from the first two. It holds:

s(t)=1/2[p(t)+z(t)].
  • In the time intervals drawn in red between  (2i1)T  and  2iT  (i  integer)  holds  s(t)=0V,  since here both  p(t)  and  z(t)  are equal to zero.
  • In the intervening intervals,  the amplitude value is two-point distributed between  0V  and  1V,  where the value  1V  occurs again with probability  p.
  • Or in other words:   The signals  z(t)  and  s(t)  are equivalent pattern signals of the identical random process with bipolar  (1V, +1V)  resp. unipolar  (0V, 1V)  signal representation.




Hints:



Questions

1

Calculate the ACF  φz(τ)  and sketch it for  p=0.25.  What values result for  τ=0τ=3T  and  τ=6T?

φz(τ=0) = 

 V2
φz(τ=3T) = 

 V2
φz(τ=6T) = 

 V2

2

Now,  using the result from  (1)  calculate the ACF  φp(τ).  What values result for  τ=0τ=3T  and  τ=6T?

φp(τ=0) = 

 V2
φp(τ=3T) = 

 V2
φp(τ=6T) = 

 V2

3

It holds again  p=0.25.  Calculate the cross-correlation function  φpz(τ) for  τ=0τ=3T  and  τ=6T ?

φpz(τ=0) = 

 V2
φpz(τ=3T) = 

 V2
φpz(τ=6T) = 

 V2

4

What ACF  φc(τ)  results in general for the sum  c(t)=a(t)+b(t) ?

φc(τ)=φa(τ)+φb(τ).
φc(τ)=φa(τ)+φab(τ)+φba(τ)+φb(τ).
φc(τ)=φa(τ)φb(τ).

5

Calculate the ACF  φs(τ),  taking into account the result of  (4).   What values result with  p=0.25  for  τ=0τ=3T  and  τ=6T ?

φs(τ=0) = 

 V2
φs(τ=3T) = 

 V2
φs(τ=6T) = 

 V2


Solution

(1)  The ACF value at  τ=0  gives the average power:

φz(τ=0)=1/2(1V)2=0.5V2_.
  • For  τ=±Tτ=±3T_, ...   results  φz(τ)=0_.
  • For intermediate values  τ=±2Tτ=±4Tτ=±6T_, ...   applies:
φz(τ)=1V22(pp+p(p1)+(p1)p+(p1)(p1))=...=0.5V2(12p)2.
  • Here  p  stands for  p(+1)  and  (p1)  for (1p)(1), i.e. probability times normalized amplitude value,  respectively.
Auto-correlation functions and cross-correlation function
  • With  p=0.25  one gets  φz(τ=±6T)=0.125V2_.


The blue curve shows  φz(τ)  for  p=0.25  in the range of  7Tτ+7T:

  • Because of the rectangular signal waveform,  a sum of triangular functions is obtained.
  • For  p=0.5  the outer  (smaller)  triangles would disappear.


(2)  The ACF  φp(τ)  of the unipolar periodic signal  p(t)  is in the generalized representation of  (1)   ⇒   ACF  φz(τ) as a special case for  p=1  .

  • Now one obtains a periodic ACF  (see red curve in the above sketch)  with
φp(τ=0)=φp(τ=±2T)=φp(τ=±4T)=...=0.5V2_,
φp(τ=±T)=φp(τ=±3T)=...=0_.


(3)  For the cross-correlation function results for  τ=±Tτ=±3T_, ...   always the value zero.

  • In contrast,  the CCF values for  τ=±2Tτ=±2T, ...   identical to those for  τ=0:
φpz(τ=0)=φpz(τ=±2T)=φpz(τ=±4T)=...=1V22(p(1p))=2p12V2.
  • You get the following results with  p=0.25  (see green curve in above sketch):
φpz(τ=0)=0.25V2_,φpz(τ=3T)=0_,φpz(τ=6T)=0.25V2_.
  • With  p=1  on the other hand  z(t)p(t)  would hold and so of course  φpz(τ)φp(τ)φz(τ).
  • For the special case  p=0.5  there would be no correlation between  p(t)  and  z(t)  and thus  φpz(τ)0.



(4)  Substituting  c(t)=a(t)+b(t)  into the general ACF definition yields:

φc(τ)=¯c(t)c(t+τ)=¯a(t)a(t+τ)+¯a(t)b(t+τ)+¯b(t)a(t+τ)+¯b(t)b(t+τ).
φc(τ)=φa(τ)+φab(τ)+φba(τ)+φa(τ).
  • The correct solution is thus the  proposed solution 2.
  • The proposed solution 1 is true only if  a(t)  and  b(t)  are uncorrelated.
  • The last proposition:  The convolution operation is always false.
  • A similar equation would result only if we consider the PDF  fc(c)  of the sum  c(t)=a(t)+b(t)  and  a(t)  and  b(t)  are statistically independent:  
fc(c)=fa(a)fb(b).


(5)  Using the result from  (4)  and taking into account the factor  1/2  we get:

φs(τ)=1/4[φp(τ)+φz(τ)+2φpz(τ)].
  • This already takes into account that the CCF between  p(t)  and  z(t)  is an even function,  so that  φpz(τ)=φzp(τ)  holds.
  • For  τ=0  one therefore obtains in general with the above results:
φs(τ=0)=1/4(0.5V2+0.5V2+22p12V2).
  • With  p=0.25  we get  φpz(τ=0)=0.125V2.  This result is plausible.  On average,  only in every eighth interval  s(t)=1V;  otherwise  s(t)=0V.
  • For even multiples of  T  holds:
φs(τ=±2T)=φs(τ=±4T)= ...=0.5V24((12p)2+1+2(2p1))=0.5V2p2.
  • With  p=0.5  we obtain for this the value  0.03125V2.  All ACF values at odd multiples of  T  are zero again.
  • This gives the outlined ACF–curve.


ACF of a unipolar rectangular signal

Thus, the numerical values we are looking for are:

φs(τ=0)=0.125V2_,
φs(τ=3T)=0_,
φs(τ=6T)=0.03125V2_.

A comparison with the sketch for subtask  (1)  shows that the binary signal  s(t)  has the same ACF as the ternary signal  z(t) except for the factor  1/4.