Processing math: 100%

Exercise 2.15Z: Block Error Probability once more

From LNTwww
Revision as of 15:37, 2 November 2022 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Binominal probabilities

Using a Reed–Solomon code with the correctability  t  and  "Bounded Distance Decoding"    (BDD)  is obtained for the block error probability with

  • the code word length  n  and
  • the symbol falsification probability  εS:
Pr(blockerror)=nf=t+1(nf)εSf(1εS)nf.

In this exercise,  the block error probability for the  RSC(7,3,5)8  and various  εS  values shall be calculated and approximated.

  • The graph shows the probabilities of the binomial distribution for parameters  n=7  ("code word length") and  εS=0.25  ("symbol falsification probability").



Hints:



Questions

1

What is the block error probability for  εS=101?

Pr(blockerror) = 

 102

2

What is the block error probability for  εS=102?

Pr(blockerror) = 

 105

3

What result is obtained for  εS=102,  considering only the term  f=t+1 ?

Approximation:Pr(blockerror)  

 105

4

What result is obtained approximately for  εS=103?

Pr(blockerror)  

 108

5

What  εS  is needed for the block error probability  1010?

εS = 

 104


Solution

(1)  For the  RSC(7,3,5)8,  because  dmin=5  t=2  gives the block error probability:

Pr(blockerror) = 7f=3(7f)εSf(1εS)7f
Pr(blockerror)=(73)0.130.94+(74)0.140.93+(75)0.150.92+(76)0.160.9+(77)0.17.
  • According to this calculation,  five terms would have to be considered.  However,  since
Pr(blockerror)=nf=0(nf)εSf(1εS)nf=1
is also valid,  the following calculation is faster:
Pr(blockerror)=1[(70)0.97+(71)0.10.96+(72)0.120.95]=1[0.4783+0.3720+0.1240]=2.57102_.


(2)  Analogous to the subtask  (1)  one obtains here:

Pr(blockerror) = 1[0.997+70.010.996+210.0120.995]=1[0.9321+0.0659+0.0020]0.
  • This means:   For the probability  εS=0.01  the simplified calculation is very error-prone,  because a value close to  1  results for the bracket expression.
  • The full calculation yields here:
Pr(blockerror) = (73)0.0130.994+(74)0.0140.993+(75)0.0150.992+(76)0.0160.99+(77)0.017
Pr(blockerror)=106[33.6209+0.3396+0.0021+...]3.396105_.


(3)  From the sample solution to the subtask  (2)  the result can be read directly:

Pr(blockerror)3.362105_.
  • The relative error is about  1%.
  • The minus sign indicates that this is only an approximation and not a bound:  The approximate value is slightly smaller than the actual value.


(4)  Restricting to the relevant term  (f=3),  we get  εS=0.001:

Pr(blockerror)(73)[103]30.99943.49108_.
  • The relative error here is only about  0.1%.


(5)  According to the derived approximation,  the following holds for the considered code:

Pr(blockerror)(73)εS3=35εS3Pr(blockerror)=1010:εS=(101035)1/3=2.8571/31041.42104_.