Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

General Model of Modulation

From LNTwww
< Modulation Methods
Revision as of 19:09, 12 January 2023 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Joint description of amplitude and angle modulation


In the following two chapters  "Amplitude Modulation"  (AM)  and  "Angle Modulation"  (WM  – from German "Winkelmodulation",  including  PM  as well as  FM)  we will always consider the set-up shown in the figure on the right.  Here,  the central block is the  »Modulator«.

Joint description of amplitude and angle modulation

The two input signals and the output signal have the following characteristics:

  • The  »source signal«   (German:  "Quellensignal"   ⇒   letter  "q")   ⇒   q(t)  is the low-frequency message signal and has the spectrum  Q(f).  This signal is continuous in value and time and limited to the frequency range  |f|BNF 
    ("NF"  from German  "Niederfrequenz"  i.e.  "low-frequency").
  • The  »carrier signal«  z(t)  is a harmonic oscillation of the form   (subscript  "T"  from German  "Träger"  i.e.  "carrier"):
z(t)=ATcos(2πfTtφT)=ATcos(2πfTt+ϕT).
  • The  »transmitted signal«  (German:  "Sendesignal"   ⇒   letter "s")   ⇒  s(t)  is a higher frequency signal,  whose spectrum  S(f) is in the range around the carrier frequency fT.


The modulator output signal  s(t)  depends on both input signals  q(t)  and  z(t).  The modulation methods considered below differ only by different combinations of  q(t)  and  z(t).

Definition:  Each  harmonic oscillation  z(t)  can be described by

  • the amplitude  AT,
  • the frequency  fT  and
  • the zero phase position  {\it ϕ}_{\rm T} .


Though the above left equation with a minus sign and  φ_{\rm T}  is mostly used for the application of Fourier series and Fourier integrals,  the right equation with  {\it ϕ}_{\rm T} = \ – φ_{\rm T}  and a plus sign is more common for the description of modulation processes.


A very simple (though unfortunately not always correct) modulator equation


\text{Definition:}  Starting from the harmonic oscillation  (here written with the angular frequency   ω_{\rm T} = 2πf_{\rm T})

z(t) = A_{\rm T} \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T})

we arrive at the  »general modulator equation«,  by assuming the previously fixed oscillation parameters to be time-dependent:

s(t) = a(t) \cdot \cos \big[\omega(t) \cdot t + \phi(t)\big ]\hspace{0.05cm}.

\text{!! Attention !!}  This general modulator equation is very simple and striking and aids in understanding modulation methods.  Unfortunately, this equation is true for frequency modulation only in exceptional cases.  This will be discussed further in the chapter  "Signal characteristics in frequency modulation" .


Special cases included in this equation are:

  • In  »amplitude modulation«  \rm (AM),  the time-dependent amplitude  a(t)  changes according to the signal  q(t),  while the other two signal parameters stay constant:
\omega(t) = \omega_{\rm T} = {\rm const.}\hspace{0.08cm}, \hspace{0.2cm}\phi(t) = \phi_{\rm T} = {\rm const.}\hspace{0.08cm}, \hspace{0.2cm} a(t) = {\rm function \hspace{0.15cm}of}\hspace{0.15cm}q(t) .
  • In  »frequency modulation«  \rm (FM),  only the instantaneous  (circular)  frequency \omega(t)  is determined by the signal  q(t):
a(t) = A_{\rm T} = {\rm const.}\hspace{0.08cm}, \hspace{0.2cm}\phi(t) = \phi_{\rm T} = {\rm const.}\hspace{0.08cm}, \hspace{0.2cm} \omega(t)= {\rm function \hspace{0.15cm}of}\hspace{0.15cm}q(t) .
  • In  »phase modulation«  \rm (PM), the phase \phi(t)  varies according to the signal  q(t):
a(t) = A_{\rm T} = {\rm const.}\hspace{0.08cm}, \hspace{0.2cm}\omega(t) = \omega_{\rm T} = {\rm const.}\hspace{0.08cm}, \hspace{0.2cm} \phi(t) = {\rm function \hspace{0.15cm}of}\hspace{0.15cm}q(t) .


In these basic methods,  two of the three oscillation parameters are thus always kept constant.


Modulated signals with a digital source signal


When describing   \rm AM\rm FM  and  \rm PM,  the source signal  q(t)  is usually assumed to be continuous in time and value.


Baseband signal together with   \rm ASK\rm FSK  and  \rm PSK

\text{Example 1:}  The graph shows at the top a rectangular source signal  q(t)    ⇒   "baseband signal",  and the modulated signals  s(t)  which result from important digital modulation methods drawn underneath.

  • In amplitude modulation,  the digital variant of which is known as  "Amplitude Shift Keying"  \rm (ASK),  the source signal can be seen in the s(t)  envelope.


  • In the  "Frequency Shift Keying"  \rm (FSK)  signal waveform,  the two possible signal values  q(t) = +1   and   q(t) =-1  are represented by two different frequencies, respectively.


  • "Phase Shift Keying"  \rm (PSK)  results in phase jumps in the signal  s(t) when the amplitude of the source signal  q(t)  jumps,  by  \pm π  (or \pm 180^\circ)  in each binary case.

Describing the physical signal using the analytic signal


The modulated signal   s(t)  is  "band-pass".  As already described in the book  "Signal Representation",  such a band-pass signal  s(t)  is often characterized by its associated  \text{analytical signal}  s_+(t).  It is important to note:

s_+(t) = s(t) + {\rm j} \cdot {\rm H}\{ s(t)\}\hspace{0.05cm}.
  • The analytical signal  s_+(t)  is therefore always complex.  The following simple relationship holds between the two time signals:
s(t) = {\rm Re} \big[s_+(t)\big] \hspace{0.05cm}.
  • The spectrum  S_+(f)  of the analytic signal is obtained from the two-sided spectrum  S(f) by doubling it for positive frequencies and setting it to zero for negative frequencies:
S_+(f) =\big[ 1 + {\rm sign}(f)\big] \cdot S(f) = \left\{ \begin{array}{c} 2 \cdot S(f) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} f>0 \hspace{0.05cm}, \\ f<0 \hspace{0.05cm}, \\ \end{array} \hspace{1.3cm} \text{with}\hspace{1.3cm} {\rm sign}(f) = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} f>0 \hspace{0.05cm}, \\ f<0 \hspace{0.05cm}. \\ \end{array}

\text{Example 2:}  The above graph shows the spectrum  S(f)  of a real-time signal  s(t).  One can see:

Illustration of the analytical signal in the frequency domain
  • The axial symmetry of the spectral function  S(f)  with respect to the frequency  f=0:  
{\rm Re}\big[S( - f)\big] = {\rm Re}\big[S(f)\big].
  • If the spectrum of the actual band-pass signal  s(t)  has an imaginary part,  it would be point-symmetric about  f=0:
{\rm Im}\big[S( - f)\big] = - {\rm Im}\big[S(f)\big].

The spectrum S_+(f)  of the corresponding analytical signal  s_+(t)  is shown below.  This is obtained from  S(f)  by

  • truncating the negative frequency components:   S_+(f) \equiv 0  for  f<0,
  • doubling the positive frequency components:   S_+(f ) = 2 \cdot S(f )  for  f \ge 0.


Except for one exceptional case that is not relevant in practice,  the analytical signal  s_+(t)  is always complex.


We now apply these definitions to the modulated signal  s(t).  In the special case that  q(t) \equiv 0 ,  s(t) is a harmonic oscillation like the carrier signal  z(t).  It holds that:

Illustration of the analytical signal in the time domain for  ϕ_{\rm T} = -45^\circ. Note:
(1)  To be display the relation  s(t) = {\rm Re}[s_+(t)]  horizontally,  the complex plane is rotated by  90^\circ  to the left,  contrary to the usual representation.  Thus:
(2)   The real part is plotted vertically and the imaginary part horizontally.
s(t) = A_{\rm T} \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T}) \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} s_+(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}(\omega_{\rm T}\hspace{0.05cm} t \hspace{0.05cm} + \phi_{\rm T})}\hspace{0.05cm}.

The second equation describes a rotating pointer with the following properties:

  • The pointer length denotes the signal amplitude  A_{\rm T}.  At time  t = 0,  the pointer lies in the complex plane with an angle of  ϕ_{\rm T}.
  • For  t > 0,  the pointer rotates with constant angular velocity  ω_{\rm T}  in a mathematically positive direction (counterclockwise).
  • The pointer tip always lies on a circle with radius  A_{\rm T}  and requires exactly the period  T_0 for one rotation.


\text{The individual modulation methods can now be represented as follows:}

  • In  »amplitude modulation«  the pointer length  a(t) = \vert s_+(t)\vert   changes according to the source signal  q(t).
    The angular velocity  ω(t)  remains constant in this case.
  • During  »frequency modulation«  the angular velocity  ω(t)  of the rotating pointer changes according to  q(t).
    The pointer length  a(t) = A_{\rm T}  stays unchanged.
  • In  »phase modulation«,  the phase  ϕ(t)  is time-dependent according to the source signal  q(t).
    There are many similarities with frequency modulation,  which also belongs to the class of angle modulation.


Describing the physical signal using the equivalent low-pass signal


Some facts concerning modulation at the transmitter and demodulation at the receiver can be explained best by means of the \text{equivalent low-pass signal}  (German:  "äquivalentes Tiefpass–Signal"   ⇒   subscript  "TP")  according to the definition given in the book  "Signal Representation"

The equivalent lowpass signal in the frequency domain

The following statements hold for this signal  s_{\rm TP}(t):

  • The spectrum  S_{\rm TP}(f)  of the equivalent low-pass signal is obtained from  S_+(f)  by shifting it to the left by  f_{\rm T}  and is thus in the frequency range around  f =0:
S_{\rm TP}(f) = S_+(f + f_{\rm T}) \hspace{0.05cm}.
s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{{-\rm j}\hspace{0.08cm} \omega_{\rm T} \hspace{0.03cm}t }\hspace{0.05cm}.
  • The equivalent low-pass signal of an unmodulated harmonic oscillation is constant for all times.  The  "locus curve"  in this special case consists of a single point:
s(t) = A_{\rm T} \cdot \cos(\omega_{\rm T}\cdot t + \phi_{\rm T}) \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}(\omega_{\rm T}\hspace{0.05cm} t \hspace{0.05cm} + \phi_{\rm T})}\hspace{0.05cm},
s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}(\omega_{\rm T}\hspace{0.05cm} t \hspace{0.05cm} + \phi_{\rm T})}\hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.05cm} \phi_{\rm T}}\hspace{0.05cm}.


\text{Important result:}  For an amplitude or phase modulated signal with carrier frequency  f_{\rm T}  it holds that:

s(t) = a(t) \cdot \cos(\omega_{\rm T}\cdot t + \phi(t)) \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} s_{\rm TP}(t) = a(t) \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.05cm} \phi (t)}\hspace{0.05cm}.

The envelope  a(t)  and the phase response  ϕ(t)  of the  (physical)  band-pass signal  s(t)  are also preserved in the equivalent low-pass signal  s_{\rm TP}(t).


\text{Example 3:}  The graph shows the modulated signal  s(t)   ⇒   red signal waveform,  compared to the carrier signal  z(t)   ⇒   blue signal waveform.
Shown on the left are the respective equivalent low-pass signals  s_{\rm TP}(t)   ⇒   green locus.

Transmitted signals for amplitude and angle modulation

Upper graph   ⇒   »Amplitude modulation«  \rm (AM):

  • Here,  the source signal  q(t)  can be seen in the envelope  a(t).
  • Since the zero crossings of the carrier  z(t)  stay the same:  ϕ(t) = 0.  The equivalent low-pass signal  s_{\rm TP}(t) = a(t)  is real.


Bottom graph   ⇒   »Angle modulation«  \rm (WM):

  • Here,  the envelope  a(t)  is constant   ⇒   the equivalent low-pass signal  s_{\rm TP}(t) = A_{\rm T} · e^{\rm j·ϕ(t)}  describes a circular arc.
  • The information about the source signal  q(t)  is found here in the location of the zero crossings  s(t).


\text{Notes:}

  • In the following,  we also refer to the time-dependent course of  s_{\rm TP}(t)  in the complex plane as the  »locus curve«. 
  • The  »pointer diagram«  describes the course of the analytical signal  s_+(t).
  • The topic presented here is illustrated in the time domain with two interactive  "HTML 5/JS"  applets:
(1)  "Physical & Analytic Signal",
(2)  "Physical Signal & Equivalent Lowpass Signal".


Exercises for the chapter


Exercise 1.4: Pointer diagram and locus curve

Exercise 1.4Z: Representation of Oscillations