Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.10Z: Code Rate and Minimum Distance

From LNTwww
Revision as of 17:28, 23 January 2023 by Hwang (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The inventors of the Reed-Solomon codes

The codes developed by  Irving Stoy Reed  and  Gustave Solomon  in the early 1960s are referred to in this tutorial as follows:

RSC(n,k,dmin)q.

The code parameters have the following meanings:

  • q=2m  is an indication of the  "size"  of the Galois field   ⇒   GF(q),
  • n=q1  is the  "code length"  (symbol number of a code word),
  • k  indicates the  "dimension"  (symbol number of an information block),
  • dmin  denotes the  "minimum distance"  between two code words. 
  • For any Reed-Solomon code:
dmin=nk+1.

No other code with the same  k  and  n  yields a larger value.



Hints:



Questions

1

Specify the characteristics of the   RSC(255,223,dmin)q.

q= 

e= 

t= 

R= 

dmin = 

2

Specify the characteristics of the   RSC(2040,1784,dmin)2 .

R= 

dmin = 

3

How many bit errors  (N3)  may a received word  y_  have at most,  so that it is  certainly decoded correctly?

N3 = 

4

How many bit errors  (N4)  may a received word  y_  have  in the best case  so that it could still be  correctly decoded?

N4 = 


Solution

(1)  From the code length  n=255  follows  q =256_.

  • The code rate is given by  R=223/255=0.8745_.
  • The minimum distance is  dmin=nk+1=255223+1=33_.
  • This allows:
  • e=dmin1 =32_  symbol errors can be detected, and
  • t=e/2  (rounded down).  So  t=16_  symbol errors can be corrected.


(2)  The code  RSC(2040,1784,dmin)2  is the binary representation of the  RSC(255,223,dmin)256  discussed in  (1) 

  • with exactly the same code rate  R =0.8745_  and
  • also the same minimum distance  dmin =33_  as this one. 


Here  8  bits  (1 byte)  are used per code symbol.


(3)  From  dmin=33  follows again  t=16  N3 =16_.

  • If exactly one bit is falsified in each code symbol,  this also means  16  symbol errors.
  • This is the maximum value that the Reed–Solomon decoder can still handle.


(4)  The Reed–Solomon decoder can correct  16  falsified code symbols.

  • It does not matter whether in a code symbol only one bit or all  m=8  bits have been falsified.
  • Therefore,  with the most favorable error distribution,  up to  N4=816 =128_  bits can be falsified without the code word being incorrectly decoded.