Processing math: 100%

Coherent and Non-Coherent On-Off Keying

From LNTwww
Revision as of 18:56, 26 April 2023 by Noah (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


Considered is the symbol error probability  pS  of   "On–off keying"   (OOK)  in the presence of white noise,  characterized by the standard deviation  σAWGN,  both in the case of  coherent demodulation  and in the case of  noncoherent demodulation.   Plotted for both cases are the probability density functions  (PDF)  of the received signal  r(t)  for the possible transmitted symbols  s0  and  s10

  • In the coherent case, there are two Gaussian functions around  s0  and  s1.
  • In the incoherent case,  there is a Rayleigh PDF for the symbol  s1=0  and a Rice PDF for  s00,  whose form also depends on the input parameter  CRice.


The applet returns the joint probabilities  Pr(r0s1)   ⇒   (filled blue area in the PDF graph)  and  Pr(r1s0)   ⇒   (red area)  and as a final result: 

pS=Pr(rs)=Pr(r0s1)+Pr(r1s0).
  • All these quantities also depend on the decision threshold  G  whose optimal value in each case is also determined.
  • In addition,  the applet shows which error one makes when approximating the generally more complicated Rice PDF by the best possible Gaussian PDF.



Theoretical Background


On–Off–Keying with coherent demodulation

The simplest digital modulation method is  "On–off keying"  (OOK).  This method – also called  "Amplitude Shift Keying"  (2ASK)  – can be characterized as follows:

Signal space constellations for on-off keying
  • OOK  is a binary and one-dimensional modulation method,  for example with  s10  and
  • s0={s0, 0}  (for cosinusoidal carrier,  left graph)  resp.
  • s0={0, s0}  (for sinusoidal carrier,  right graph).
  • With coherent demodulation,  the signal space constellation of the received signal is equal to that of the transmitted signal and again consists of the two points  r0=s0  and  r1=s1.  
  • In this case,  the AWGN noise is one-dimensional with variance  σ2AWGN  and one obtains  corresponding to the   "theory section"  for the  "symbol error probability":
pS=Pr(rs)=Q(s0/2σAWGN)=Q(ES/N0).

To this it should be noted:

  1. The function  Q(x)  is called the  "Complementary Gaussian Error Function".
  2. The above equation applies to equally probable symbols with the decision threshold  G  midway between  r0  and  r1.
  3. The distance of the two signal points from the decision threshold  G  is thus respectively  ΔG=s0/2  (counter in the argument of the first  Q–function).
  4. ES=s20/2T  denotes for this case the  "average energy per symbol"  and  N0=2Tσ2AWGN  is the  (one-sided)  AWGN noise power density.


BER calculation for coherent demodulation

Example 1:  Let be  σAWGN=0.8  and  s0=2,  ⇒   G=1  (these values are normalized to  1V).

The graph shows two  "half Gaussian functions"  around  s1=0  (blue curve)  and  s0=2  (red curve).  The threshold value  G.  The shaded areas mark the symbol error probability.

  • According to the first equation,  with  ΔG=s0G=Gs1=1:  
pS=Q(1/0.8)=Q(1.25)10.56%.
  • Similarly,  the second equation provides:  ES/N0=1/4s20/σ2AWGN=1.5615:
pS=Q(1.5615)10.56%.

Due to symmetry,  the threshold  G=1  is optimal.  In this case,  the red and blue shaded areas are equal   ⇒   the symbols  s0  and  s1  are falsified in the same way.

With  G1  there is a larger falsification probability.  For example,  with  G=0.6:

pS=Pr(rs)=Pr(r0s1)+Pr(r1s0)=1/2Q(0.75)+1/2Q(1.75)13.33%.

Here the falsification probability for the symbol  s1   ⇒   blue filled area Pr(r0s1)11.33%  is much larger than that of the symbol  s0   ⇒   red filled area Pr(r1s0)2%.


On–Off–Keying with noncoherent demodulation

The following diagram shows the structure  (in the equivalent low-pass range)  of the optimal OOK receiver for incoherent demodulation.  See  "Detailed description".  According to this graph applies:

Receiver for incoherent OOK demodulation  (complex signals are labeled blue)
  • The input signal  r(t)=s(t)ejϕ+n(t)  at the receiver is generally complex because of the current phase angle  ϕ  and because of the complex noise term  n(t).
  • Now the correlation between the complex received signal  r(t)  and a  "complex basis function"  ξ(t)  is required.
  • The result is the  (complex)  detected value  r,  from which the magnitude  y=|r(t)|  is formed as a real decision input.
  • If  y>G,  then the estimated value  m0  for the symbol  s0  is output,  otherwise the estimated value  m1  for the symbol  s1.
  • Once again,  the mean symbol error probability can be represented as the sum of two joint probabilities:
pS=Pr(rs)=Pr(r0s1)+Pr(r1s0).


Error probability calculation considering Rayleigh and Rice distribution

To calculate the symbol error probability for incoherent demodulation,  we start from the following graph.  Shown is the received signal in the equivalent low-pass region in the complex plane.

Incoherent demodulation of On-Off-Keying
  1. The point  s1=0  leads in the received signal again to  r1=0.
  2. In contrast,  r0=s0ejϕ  can lie on any point of a circle with  radius  1  since the phase  ϕ  is unknown.
  3. The decision process taking into account that the AWGN noise is now to be interpreted in two dimensions,  as indicated by the arrows in the graph.
  4. The decision region  I1  for symbol  s1  is the blue filled circle with radius  G,  where the correct value of  G  remains to be determined.
  5. If the received value  r is outside this circle,  i.e. in the red highlighted area  I0,  the decision is in favor of  s0.


Rayleigh portion

Considering the AWGN–noise,  r1=s1+n1.  The noise component  n1  has a  "Rayleigh distribution"  (amount of the two mean-free Gaussian components for  I  and  Q).

  • Their conditional PDF is with the rotationally symmetric noise component  η  with  σ=σAWGN :
fy|s1(η|s1)=ησ2eη2/(2σ2)=fRayleigh(η).
  • Thus one obtains for the conditional probability
Pr(r0|s1)=GfRayleigh(η)dη,
and with the factor  1/2  because of the equally probable transmitted symbols, the joint probability:
Pr(r0s1)=1/2Pr(r0|s1)=1/2GfRayleigh(η)dη.

Rice portion

The noise component  n0  has a  "Rice distribution"  (magnitude of Gaussian components with mean values  mx  and  my)   ⇒   constant  C=m2x+m2y
(Note:   In the applet, the constant  C  is denoted by  CRice ).

fy|s0(η|s0)=ησ2e(C2+η2)/(2σ2)I0(ηCσ2)=fRice(η)withI0(η)=k=0(η/2)2kk!Γ(k+1).

This gives the second joint probability:

Pr(r1s0)=1/2G0fRice(η)dη.
Density functions for "OOK, non-coherent"

Example 2:  The graph shows the result of this equation for  σAWGN=0.5  and  CRice=2.  The decision threshold is at  G1.25.  One can see from this plot:

  • The symbol error probability  pS  is the sum of the two colored areas.  As in Example 1 for the coherent case:
pS=Pr(rs)=Pr(r0s1)+Pr(r1s0).
  • The area marked in blue gives the joint probability  Pr(r0s1)2.2%  This is calculated as the integral over half the Rayleigh PDF in the range from  G  to  .
  • The red highlighted area gives the joint probability  Pr(r1s0)2.4%  This is calculated as the integral over half the Rice PDF in the range from  0  to  G.
  • Thus obtaining  pS4.6%.  Note that the red and blue areas are not equal and that the optimal decision boundary  Gopt  is obtained from the intersection of the two curves.
  • The optimal decision threshold  Gopt  is obtained as the intersection of the blue and red curves.


Exercises


  • Select the number  (1, 2, ... )  of the task to be processed.  The number "0" corresponds to a "Reset":  Setting as at the program start.
  • A task description is displayed.  Parameter values are adjusted.  Solution after pressing "Sample solution". 
  • Always interpret the graphics and the numerical results.  The symbols  s0  (adjustable) and  s10  are equal probability.
  • For space reasons, in some of the following questions and sample solutions we also use  σ=σAWGN  and  C=CRice.


(1)   We consider  coherent  demodulation with  σAWGN=0.5  and  s0=2.  What is the smallest possible value for the symbol error probability  pS?

  • For coherent demodulation, the PDF of the reception signal is composed of two "half" Gaussian functions around  s0=2  (red) and  s1=0  (blue).
  • Here the minimum  pS value results with  G=1  and  ΔG=s0G=Gs1=1  to  pS=Q(ΔG/σ)=Q(1/0.5)=Q(2)2.28%.
  • With  G=1  both symbols are falsified equally.   The blue area Pr(r0s1)  is equal to the red area  Pr(r1s0).  Their sum gives  pS.
  • With  G=0.5  the red area is almost zero.  Nevertheless   pS8%  (sum of both areas)  is more than twice as large as with  Gopt=1.


(2)   Now let  σ=0.75.  With what  s0  value does optimal G give the same symbol error probability as in (1)?  Then what is the quotient  ES/N0?

  • In general  pS=Q((s0/2)/σ).  If one increases  σ  from  0.5  to   0.75, then  s0  must also be increased   ⇒   s0=3   ⇒   pS=Q(1.5/0.75)=Q(2).
  • Except  pS=Q((s0/2)/σ)  but also holds:  pS=Q(ES/N0).  It follows:  pS=Q(2)=Q(ES/N0)   ⇒   ES/N0=2   ⇒   ES/N0=4.
  • For control:  ES=s20/2T, N0=2Tσ2   ⇒   ES/N0=s20/(4σ2)=32/(40.752)=4.  The same  ES/N0=4  results for the problem  (1).


(3)   Now consider  non–coherent  demodulation with  σAWGN=0.75CRice=2.25  and  G=2.  What is the symbol error probability  pS?

  • For non–coherent demodulation, the PDF of the reception signal is composed of "half" a Rayleigh function (blue) and "half" a Rice function (red).
  • Pr(r0s1)1.43%  gives the proportions of the blue curve above  G=2, and Pr(r1s0)15.18%  the proportions of the red curve below  G=2.
  • With  G=2  the sum for the symbol error probability is  pS16.61% , and with  Gopt=1.58  a slightly better value:  pS12.25%.


(4)   Let  X  be a Rayleigh random variable in general and  Y  be a Rice random variable, each with above parameters.  How large are  Pr(X2)  and  Pr(Y2) ?

  • It holds  Pr(Y2)=2Pr(r1s0)30.36%,  since in the applet the Rice PDF is represented by the factor  1/2.
  • In the same way  Pr(X>2)=2Pr(r0s1)2.86%   ⇒   Pr(X2)=10.0286=97.14%.


(5)   We consider the values  σAWGN=0.75CRice=2.25  and  G=Gopt=1.58.  How does  pS change when "Rice" is replaced by "Gauss" as best as possible?

  • After the exact calculation, using the optimal threshold  Gopt=1.58:     Pr(r0s1)5.44%Pr(r1s0)6.81%   ⇒   pS12.25%.
  • With the Gaussian approximation, for the same  G  the first term is not changed.  The second term increases to  Pr(r1s0)9.29%   ⇒   pS14.73%.
  • The new optimization of the threshold  G  considering the Gaussian approximation leads to  Gopt=1.53  and  pS14.67%.
  • The parameters of the Gaussian distribution are set as follows:  mean  mGaussian=CRice=2.25,  standard deviation  σGaussian=σAWGN=0.75.


(6)   How do the results change from  (5)  with  σAWGN=0.5CRice=1.5  and with  σAWGN=1CRice=3  respectively,  each with   G=Gopt?

  • With the optimal decision threshold  Gopt, the probabilities are the same, both for the exact Rice distribution and with the Gaussian approximation.
  • For all three parameter sets,  ES/N0=2.25.  This suggests:  The results with non–coherent demodulation depend on this characteristic value alone.


(7)   Let the setting continue to be  non–coherent/approximation  with  CRice=3G=Gopt.  Vary the AWGN standard deviation in the range  0.5σ1.
         Interpret the relative error   ⇒   (FalseCorrect)/Correct  as a function of the quotient  ES/N0.

  • With  σ=0.5   ⇒   ES/N0=9  one obtains  p (exact)S0.32%  and  p (approximate)S0.38%.  The absolute error is  0.06%  and the relative error  18.75%.
  • With  σ=1   ⇒   ES/N0=2.25  one obtains  p (exact)S12.25%  and  p (approximate)S14.67%.  The absolute error is  2.42%  and the relative error  19.75%.
  • ⇒   The Gaussian approximation becomes better with larger  ES/N0.  This statement can be seen more clearly from the absolute than from the relative error.


(8)   Now repeat the last experiment with  coherent  demodulation and  s0=3G=Gopt.  What conclusion does the comparison with  (7) allow?

  • The comparison of  (7)  and  (8)  shows:     For each  ES/N0  there is a greater (worse) symbol error probability with non–coherent demodulation.
  • For  ES/N0=9:     p (coherent)S0.13%  and  p (noncoherent)S0.32%.   And for  ES/N0=2.25:     p (coherent)S6.68%  and  p (noncoherent)S12.25%
  • The simpler realization of the incoherent demodulator (no clock synchronization) causes a loss of quality   ⇒   greater error probability.

Applet Manual

Screenshot (English version,  light background)


    (A)     Selection:

  • coherent,
  • Incoherent,
  • Incoherent with approximation.

    (B)     Parameter input: 

  • σAWGN
  • s0
  • ES/N0
  • Gopt

    (C)     Numerical output area of probabilities.

    (D)     Graphical output area of PDF proportions.

    (E)     Exercise selection

    (F)     Questions and solutions

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • Last revision and English version 2021 by Carolin Mirschina. 
  • The conversion of this applet was financially supported by  "Studienzuschüsse"  (TUM Department of Electrical and Computer Engineering).  We thank.

Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen