Applets:Frequency & Impulse Responses

From LNTwww
Revision as of 18:49, 20 August 2020 by Guenter (talk | contribs)

Open Applet in a new tab       German Version

Applet Description


Dargestellt werden reelle und symmetrische Tiefpässe  $H(f)$  und die dazugehörigen Impulsantworten  $h(t)$, nämlich

  • Gaussian lowpass,
  • Rectangular lowpass,
  • Triangular lowpass,
  • Trapezoidal lowpass,
  • Cosine-rolloff lowpass,
  • Cosine-rolloff -squared lowpass.


Es ist zu beachten:

  • Die Funktionen  $H(f)$  bzw.  $h(t)$  werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
  • Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
  • Die Abszissen  $t$  (Zeit) und  $f$  (Frequenz) sowie die Ordinaten  $H(f)$  und  $h(t)$  sind jeweils normiert.


Theoretical background


Frequency Response  $H(f)$  and Impulse Response  $h(t)$

  • Der  Frequenzgang  (oder auch die  Übertragungsfunktion)  $H(f)$  eines linearen zeitinvarianten Übertragungssystems gibt das Verhältnis zwischen dem Ausgangsspektrum  $Y(f)$  und dem dem Eingangsspektrum  $X(f)$  an:
$$H(f) = \frac{Y(f)}{X(f)}.$$
  • Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem  Tiefpass  (englisch:  Low-pass).
  • Die Eigenschaften von  $H(f)$  werden im Zeitbereich durch die  Impulsantwort  $h(t)$  ausgedrückt.  Entsprechend dem  zweiten Fourierintegral  gilt:
$$h(t)={\rm IFT} [H(f)] = \int_{-\infty}^{+\infty}H(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
$$H(f)={\rm FT} [h(t)] = \int_{-\infty}^{+\infty}h(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
  • In allen Beispielen verwenden wir reelle und gerade Funktionen.  Somit gilt:
$$h(t)=\int_{-\infty}^{+\infty}H(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ H(f)=\int_{-\infty}^{+\infty}h(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • Bei einem Vierpol  $[$das bedeutet:  $X(f)$  und  $Y(f)$  haben gleiche Einheiten$]$   ist  $Y(f)$  dimensionslos. 
  • Die Einheit der Impulsantwort ist  $\rm 1/s$.  Es gilt zwar $\rm 1/s = 1 \ Hz$, aber die Einheit „Hertz” ist in diesem Zusammenhang unüblich.
  • Der Zusammenhang zwischen diesem Applet und dem ähnlich aufgebauten Applet  Impulse und Spektren  basiert auf dem  Vertauschungssatz.
  • Alle Zeiten sind auf eine Normierungszeit  $T$  normiert und alle Frequenzen auf  $1/T  \ \Rightarrow$  die Zahlenwerte von   $h(t)$  müssen noch durch  $T$  dividiert werden.


$\text{Beispiel:}$  Stellt man einen Rechteck–Tiefpass mit Höhe  $K_1 = 1$  und äquivalenter Bandbreite  $\Delta f_1 = 1$  ein,

  • so ist der Frequenzgang  $H_1(f)$  im Bereich  $-1 < f < 1$  gleich  $1$  und außerhalb dieses Bereichs gleich Null. 
  • Die Impulsantwort  $h_1(t)$  verläuft  $\rm si$–förmig mit  $h_1(t= 0) = 1$  und der ersten Nullstelle bei  $t=1$.


Mit dieser Einstellung soll nun ein Rechteck–Tiefpass mit  $K = 1.5$  und  $\Delta f = 2 \ \rm kHz$  nachgebildet werden, wobei die Normierungszeit  $T= 1 \ \rm ms$  betrage. 

  • Dann liegt die erste Nullstelle bei  $t=0.5\ \rm ms$  und das Impulsantwortmaximum ist dann  $h(t= 0) = 3 \cdot 10^3 \ \rm 1/s$.


Gaussian Lowpass

  • Der Gauß–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f/\Delta f)^2}.$$
  • Die äquivalente Bandbreite  $\Delta f$  ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei  $f = \Delta f/2$  ist um den Faktor  $0.456$  kleiner als der Wert bei  $f=0$.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm e}^{-\pi(t\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f)^2} .$$
  • Je kleiner  $\Delta f$  ist, um so breiter und niedriger ist die Impulsantwort   ⇒   Reziprozitätsgesetz von Bandbreite und Impulsdauer.
  • Sowohl  $H(f)$  als auch  $h(t)$  sind zu keinem  $f$– bzw.  $t$–Wert exakt gleich Null.
  • Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. 
  • Zum Beispiel ist  $h(t)$  bereits bei  $t=1.5 \cdot \Delta t$  auf weniger als  $0.1\% $  des Maximums abgefallen.


Rectangular Lowpass

  • Der Rechteck–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
  • Der  $\pm \Delta f/2$–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Impulsantwort  $h(t)$  erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • Der  $h(t)$–Wert bei  $t=0$  ist gleich der Rechteckfläche des Frequenzgangs.
  • Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen  $1/\Delta f$.
  • Das Integral über die Impulsantwort  $h(t)$  ist gleich dem Frequenzgang  $H(f)$  bei der Frequenz  $f=0$, ist also gleich  $K$.


Triangular Lowpass

  • Der Dreieck–Tiefpass lautet mit der Höhe  $K$  und der (äquivalenten) Bandbreite  $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|f|}{\Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Die absolute physikalische Bandbreite  $B$   ⇒   [nur positive Frequenzen]   ist ebenfalls gleich  $\Delta f$, ist also so groß wie beim Rechteck–Tiefpass.
  • Für die Impulsantwort  $h(t)$  erhält man gemäß der Fouriertransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • $H(f)$  kann man als Faltung zweier Rechteckfunktionen  $($jeweils mit Breite  $\Delta f)$  darstellen.
  • Daraus folgt:  $h(t)$  beinhaltet anstelle der  ${\rm si}$-Funktion die  ${\rm si}^2$-Funktion.
  • $h(t)$  weist somit ebenfalls Nullstellen im äquidistanten Abständen  $1/\Delta f$  auf.
  • Der asymptotische Abfall von  $h(t)$  erfolgt hier mit  $1/t^2$, während zum Vergleich beim Rechteck–Tiefpass  $h(t)$  mit  $1/t$  abfällt.


Trapezoidal Lowpass

Der Trapez–Tiefpass lautet mit der Höhe  $K$  und den beiden Eckfrequenzen  $f_1$  und  $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{f_2-|f|}{f_2-f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite  (flächengleiches Rechteck)  gilt:  $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall  $r=0$  entspricht dem Rechteck–Tiefpass und der Sonderfall  $r=1$  dem Dreieck–Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t)\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t) \quad \text{mit} \quad {\rm si}(x)={\sin(x)}/{x}.$$
  • Der asymptotische Abfall von  $h(t)$  liegt zwischen  $1/t$  $($für Rechteck–Tiefpass oder  $r=0)$  und  $1/t^2$  $($für Dreieck–Tiefpass oder  $r=1)$.


Cosine-rolloff Lowpass

Der Cosinus–Rolloff–Tiefpass lautet mit der Höhe  $K$  und den beiden Eckfrequenzen  $f_1$  und  $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|f|-f_1}{f_2-f_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite  (flächengleiches Rechteck)  gilt:  $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall  $r=0$  entspricht dem Rechteck–Tiefpass und der Sonderfall  $r=1$  dem Cosinus-Quadrat-Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot \frac{\cos(\pi \cdot r\cdot \Delta f \cdot t)}{1-(2\cdot r\cdot \Delta f \cdot t)^2} \cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Je größer der Rolloff-Faktor  $r$  ist, desto schneller nimmt  $h(t)$  asymptotisch mit  $t$  ab.


Cosine-rolloff-squared Lowpass

  • Dies ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses und ergibt sich aus diesem für  $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}f_1=0,\ f_2= \Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|f|\hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\pi}/{4}\cdot \big [{\rm si}(\pi(\Delta f\cdot t +0.5))+{\rm si}(\pi(\Delta f\cdot t -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Wegen der letzten  ${\rm si}$-Funktion ist  $h(t)=0$  für alle Vielfachen von  $T=1/\Delta f$   ⇒   Die äquidistanten Nulldurchgänge des Cosinus–Rolloff–Tiefpasses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist  $h(t)$  nun weitere Nulldurchgänge bei  $t=\pm1.5 T$,  $\pm2.5 T$,  $\pm3.5 T$, ...  auf.
  • Für  $t=\pm T/2$  hat die Impulsanwort den Wert  $K\cdot \Delta f/2$.
  • Der asymptotische Abfall von  $h(t)$  verläuft in diesem Sonderfall mit  $1/t^3$.

Exercises


Aufgaben 2D-Gauss.png
  • First select the number (1, ... , 6) of the exercise.
  • A description of the exercise will be displayed.  The parameter values are adjusted.
  • Solution after pressing "Show solution".
  • The number 0 corresponds to a „Reset”:  Same setting as at the program start.
  • „Red” corresponds to the first parameter set   ⇒   $H_1(f)   \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\   h_1(t)$
  • „Blue” corresponds to the second parameter set   ⇒   $H_2(f)   \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\   h_2(t)$.
  • Values smaller than  $0.0005$  are set to zero in the program.


(1)   Compare the  red Gaussian lowpass  $(K_1 = 1, \Delta f_1 = 1)$  to the  blue rectangular lowpass  $(K_2 = 1, \Delta f_2 = 1)$.  Questions:
        (a)  Which output signals  $y(t)$  result from the signal  $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$  with  $f_0 = 0.5$?
        (b)  What are the differences between the two lowpass filters with  $f_0 = 0.5 \pm f_\varepsilon$  and  $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?

(a)  It holds  $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$  with  $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 0.912, \ A_2 = 1,000$.  The phase  $\varphi_0$  remains unchanged.
(b)  For  red  $ A_1 = 0.912$  is still valid.  For  blue  it holds  $A_2 = 0$  for  $f_0 = 0.5000\text{...}001$  and  $A_2 = 2$  for  $f_0 = 0.4999\text{...}999$.


(2)   Leave the settings unchanged.  Which lowpass  $H(f)$  fulfills the first or the second Nyquist criterion?
        Here  $H(f)$  denotes the total frequency response of transmitter, channel and reception filter.

  • First Nyquist criterion:  The impulse response  $h(t)$  must have equidistant zero crossings at the (normalized) times  $t = 1,\ 2$, ...
  • The impulse response  $h(t) = {\rm si}(\pi \cdot \delta f \cdot t)$  of the rectangular lowpass filter fulfils this criterion with  $\Delta f = 1$.
  • In contrast, the first Nyquist criterion is never fulfilled for the Gaussian lowpass and there is always impulse interference.
  • The second Nyquist criterion is met by neither the rectangular lowpass nor the Gaussian lowpass.


(3)   Compare the  red rectangular lowpass  $(K_1 = 0.5, \Delta f_1 = 2)$  to the  blue rectangular lowpass  $(K_2 = 1, \Delta f_2 = 1)$.  Then vary  $\Delta f_1$  between  $2$  and  $0.5$.

  • With  $\Delta f_1 = 2$  the zeros of  $h_1(t)$  are multiples  of  $0.5$   ⇒   $h_1(t)$   will decay twice as fast as  $h_2(t)$.
  • With the present setting,  $h_1(t = 0) = h_2(t = 0)$ holds,  since the rectangular areas of  $H_1(f)$  and  $H_2(f)$  are equal.
  • By decreasing  $\Delta f_1$,  the impulse response  $h_1(t)$  becomes wider and lower.  With  $\Delta f_1 = 0.5$,  $h_1(t)$ is twice as wide as  $h_2(t)$,  but simultaneously by a factor  $4$  lower.


(4)   Compare the  red trapezoidal lowpass  $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$  with the  blue rectangular lowpass   $(K_2 = 1, \ \Delta f_2 = 1)$.  Vary  $r_1$  between  $0$  and  $1$.

  • With  $r_1 = 0.5$  the  followers/precursors of  $h_1(t)$  for the "trapezoid" are less than for the "rectangle" due to the flatter edge drop .
  • With smaller  $r_1$  followers & precursors increase.  With  $r_1= 0$  the trapezoidal is equal to the rectangular lowpass   ⇒   $h(t)= {\rm si}(\pi \cdot t/T)$.
  • With larger  $r_1$  followers & precursors become smaller.  With  $r_1= 1$  the trapezoidal is equal to the triangular lowpass   ⇒   $h(t)= {\rm si}^2(\pi \cdot t/T)$.


(5)   Compare the  trapezoidal lowpass  $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$  to the  cosine-rolloff lowpass  $(K_2 = 1, \ \Delta f_2 = 1, \ r_2 = 0.5)$.
        Vary  $r_2$  between  $0$  and  $1$.  Interpret the impulse response for  $r_2 = 0.75$.  Which lowpass satisfies the first Nyquist criterion?

  • With  $r_1 = r_2= 0.5$  the edge drop of  $H_2(f)$  is steeper by the frequency  $f = 0.5$  than the edge drop of  $H_1(f)$.
  • With the same rolloff  $r= 0.5$  the impulse response  $h_2(t)$  for  $t > 1$  has larger amounts than  $h_1(t)$.
  • With  $r_1 = 0.5$  and  $r_2 = 0.75$  $H_1(f) \approx H_2(f)$  holds and therefore also  $h_1(t) \approx h_2(t)$. 
  • $H_1(f)$  and  $H_2(f)$  both fulfill the first Nyquist criterion:  Both functions are point-symmetrical around the „Nyquist point”.
  • Because of  $\Delta f = 1$  both  $h_1(t)$  and  $h_2(t)$  have zero crossings at  $\pm 1$,  $\pm 2$   ⇒   in each case maximum vertical eye opening.


(6)   Compare the  cosine-square lowpass  $(K_1 = 1, \ \ \Delta f_1 = 1)$  with the  cosine-rolloff lowpass  $(K_2 = 1, \ \ \Delta f_2 = 1,\ r_2 = 0.5)$.
        Vary  $r_2$  between  $0$  and  $1$.  Interpret the results.  Which low pass satisfies the second Nyquist criterion?

  • $H_1(f)$  is a special case of the cosine-rolloff lowpass with rolloff  $r_2 =1$.  The first Nyquist criterion is also fulfilled with  $r_2 \ne 1$.
  • According to the second Nyquist criterion  $h(t)$  must also have zeros at  $t=\pm 1.5$,  $\pm 2.5$,  $\pm 3.5$, ...  $($ but not, however, at  $t = \pm 0.5)$.
  • For the cosine-square lowpass,  $h_1(t=\pm 0.5) = 0.5$  and it therefore holds  $h_1(t=\pm 1) = h_1(t=\pm 1.5) = h_1(t=\pm 2)= h_1(t=\pm 2.5) = \text{...} =0$.
  • Only the cosine-square lowpass fulfils the first and second Nyquist criteria simultaneously:  Maximum vertical and horizontal eye opening.



Applet Manual

Exercise Frequenzgang 1.png

    (A)     Bereich der graphischen Darstellung für $H(f)$

    (B)     Bereich der graphischen Darstellung für $h(t)$

    (C)     Variationsmöglichkeit für die graphischen Darstellungen

    (D)     Parametereingabe per Slider
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”

    (E)     Parameter entsprechend der Voreinstellung   ⇒   „Reset”

    (F)     Einstellung von $t_*$ und $f_*$ für Numerikausgabe

    (G)     Numerikausgabe von $H(f_*)$ und $h(t_*)$
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern)
                     und $\rm o$ (Zurücksetzen)

    (*)   Verschiebe–Funktionen „$\leftarrow$” (Bildausschnitt nach links,
                     Ordinate nach rechts) sowie „$\uparrow$” „$\downarrow$” „$\rightarrow$”


Andere Möglichkeiten:

  • Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
  • Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.



About the authors

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
  • 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Once again: Open Applet in new Tab

Open Applet in a new tab       German Version