Difference between revisions of "Aufgaben:Exercise 1.2: ISDN and PCM"

From LNTwww
 
(6 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1578__Bei_A_1_2.png|right|frame|Components of the PCM transmitter]]
+
[[File:EN_Bei_A_1_2.png|right|frame|Components of PCM transmitter]]
The conversion of the analog voice signal  $q(t)$  into the binary signal  $q_{\rm C}(t)$  is done at ISDN  (''Integrated Services Digital Network'')  according to the guidelines of pulse code modulation (PCM) by
+
The conversion of the analog speech signal  $q(t)$  into the binary signal  $q_{\rm C}(t)$  is done at   $\rm ISDN$  ("Integrated Services Digital Network")  according to the guidelines of  "pulse code modulation"  $\rm (PCM)$  by
 
*sampling in the interval  $T_{\rm A} = 1/f_{\rm A}$,
 
*sampling in the interval  $T_{\rm A} = 1/f_{\rm A}$,
 +
 
*quantization to  $M = 256$  discrete values,
 
*quantization to  $M = 256$  discrete values,
*binary PCM coding with  $N$  bits per quantization value.
+
 
 +
*binary PCM encoding with  $N$  bits per quantization value.
  
  
The net data rate of a so-called  $\rm B$ channel  (''Bearer Channel'') is  $64 \ \rm kbit/s$  and corresponds to the bit rate of the redundancy-free binary signal  $q_{\rm C}(t)$. However, because of the subsequent redundant channel coding and the inserted signaling bits, the gross data rate – i.e., the transmission rate of the transmitted signal  $s(t)$  – is greater.
+
The net data rate of a  $\rm B$ channel  ("Bearer Channel") is  $64 \ \rm kbit/s$  and corresponds to the bit rate of the redundancy-free binary signal  $q_{\rm C}(t)$.   
  
 +
However,  because of the subsequent redundant channel coding and the inserted signaling bits,  the gross data rate – i.e.,  the transmission rate of the transmitted signal  $s(t)$  – is greater.
  
A measure for the quality of the entire (ISDN) transmission system is the sink SNR
+
A measure for the quality of the entire ISDN transmission system is the sink SNR
 
:$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$
 
:$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$
  
as the ratio of the powers of the analog signal  $q(t)$  bandlimited to the range  $300 \ {\rm Hz}\  \text{...}\  3400 \ {\rm Hz}$  and the error signal  $\varepsilon (t) = v (t) - q(t)$.
+
as the ratio of the powers  
 +
*of the analog signal  $q(t)$  bandlimited to the range  $300 \ {\rm Hz}\  \text{...}\  3400 \ {\rm Hz}$   
  
An ideal signal reconstruction with an ideal rectangular low-pass filter is assumed here for the sink signal  $v (t)$. 
+
*and the error signal  $\varepsilon (t) = v (t) - q(t)$.  
  
  
 +
An ideal signal reconstruction with an ideal rectangular low-pass filter is assumed here for the sink signal  $v (t)$. 
  
  
  
  
 +
<u>Notes:</u>
 +
*The exercise refers to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|"General Description of ISDN"]] of this book.
  
''Notes:''
+
*Reference is also made to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]]&nbsp; of the book&nbsp; "Modulation Methods".
*The exercise refers to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|"General Description of ISDN"]] of this book.
 
*Reference is also made to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]]&nbsp; of the book "Modulation Methods".
 
  
  
Line 36: Line 41:
 
<quiz display=simple>
 
<quiz display=simple>
  
{With how many bits&nbsp; $(N)$&nbsp; is each (quantized) sample represented?
+
{With how many bits&nbsp; $(N)$&nbsp; is each quantized sample represented?
 
|type="{}"}
 
|type="{}"}
 
$N \ = \ $ { 8 3% }  
 
$N \ = \ $ { 8 3% }  
Line 51: Line 56:
 
{Is the sink SNR&nbsp; $\rho_{v}$&nbsp; at ISDN limited by the following effects?
 
{Is the sink SNR&nbsp; $\rho_{v}$&nbsp; at ISDN limited by the following effects?
 
|type="[]"}
 
|type="[]"}
- Sampling (if sampling theorem is satisfied),
+
- Sampling&nbsp; (if sampling theorem is satisfied),
+ AWGN noise (transmission error).
+
+ AWGN noise&nbsp; (transmission error).
  
  
Line 66: Line 71:
  
 
'''(2)'''&nbsp;  For the bit rate,&nbsp; $R_{\rm B} = N \cdot f_{\rm A}$.  
 
'''(2)'''&nbsp;  For the bit rate,&nbsp; $R_{\rm B} = N \cdot f_{\rm A}$.  
*Thus, from&nbsp; $R_{\rm B} = 64 \ \rm  kbit/s$&nbsp; and&nbsp; $N = 8$,&nbsp; we get&nbsp; $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.
+
*Thus,&nbsp; from&nbsp; $R_{\rm B} = 64 \ \rm  kbit/s$&nbsp; and&nbsp; $N = 8$,&nbsp; we get&nbsp; $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.
  
  
  
'''(3)'''&nbsp;  Due to the bandwidth limitation, the highest frequency contained in the signal&nbsp; $q(t)$&nbsp; is equal to&nbsp; $3.4 \ \rm kHz$.  
+
'''(3)'''&nbsp;  Due to the bandwidth limitation,&nbsp; the highest frequency contained in the signal&nbsp; $q(t)$&nbsp; is equal to&nbsp; $3.4 \ \rm kHz$.
*Therefore, according to the sampling theorem,&nbsp; $f_{\rm A} ≥ 6.8 \ \rm kHz$&nbsp; should hold.  
+
 +
*Therefore,&nbsp; according to the sampling theorem,&nbsp; $f_{\rm A} ≥ 6.8 \ \rm kHz$&nbsp; should hold.
 +
 
*With&nbsp;  $f_{\rm A} = 8 \ \rm kHz$&nbsp; the condition is fulfilled &nbsp; &rArr; &nbsp; $\underline {\rm YES}$.
 
*With&nbsp;  $f_{\rm A} = 8 \ \rm kHz$&nbsp; the condition is fulfilled &nbsp; &rArr; &nbsp; $\underline {\rm YES}$.
  
  
'''(4)'''&nbsp;  The <u>last statement</u> is correct:
+
'''(4)'''&nbsp;  The&nbsp; <u>last statement</u>&nbsp; is correct:
*Even if the influence of the AWGN noise is small $($small noise power density&nbsp; $N_{0})$, the sink SNR&nbsp; $\rho_{v}$&nbsp; cannot fall below a limit given by the quantization noise:
+
*Even if the influence of the AWGN noise is small&nbsp; $($small noise power density&nbsp; $N_{0})$,&nbsp; the sink SNR&nbsp; $\rho_{v}$&nbsp; cannot fall below a limit given by the quantization noise:
 
:$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
 
:$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
  
*With larger noise interference,&nbsp; $\rho_{v}$&nbsp; is further (significantly) reduced by the transmission errors then present.
+
*With larger noise interference,&nbsp; $\rho_{v}$&nbsp; can further&nbsp; (significantly)&nbsp; be reduced by the transmission errors.
*In contrast, sampling results in no loss of quality if the sampling theorem is obeyed.  
+
 
*Sampling can then be completely undone if the source signal&nbsp; $q(t)$&nbsp; is bandlimited and the signal reconstruction is correctly dimensioned:&nbsp;   ideal low-pass.
+
*In contrast,&nbsp; sampling results in no loss of quality if the sampling theorem is obeyed.
 +
 +
*Sampling can then be completely undone if the source signal&nbsp; $q(t)$&nbsp; is bandlimited and the signal reconstruction is correctly dimensioned &nbsp; &rArr;  &nbsp; ideal low-pass.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 17:36, 23 January 2023

Components of PCM transmitter

The conversion of the analog speech signal  $q(t)$  into the binary signal  $q_{\rm C}(t)$  is done at  $\rm ISDN$  ("Integrated Services Digital Network")  according to the guidelines of  "pulse code modulation"  $\rm (PCM)$  by

  • sampling in the interval  $T_{\rm A} = 1/f_{\rm A}$,
  • quantization to  $M = 256$  discrete values,
  • binary PCM encoding with  $N$  bits per quantization value.


The net data rate of a  $\rm B$ channel  ("Bearer Channel") is  $64 \ \rm kbit/s$  and corresponds to the bit rate of the redundancy-free binary signal  $q_{\rm C}(t)$. 

However,  because of the subsequent redundant channel coding and the inserted signaling bits,  the gross data rate – i.e.,  the transmission rate of the transmitted signal  $s(t)$  – is greater.

A measure for the quality of the entire ISDN transmission system is the sink SNR

$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$

as the ratio of the powers

  • of the analog signal  $q(t)$  bandlimited to the range  $300 \ {\rm Hz}\ \text{...}\ 3400 \ {\rm Hz}$ 
  • and the error signal  $\varepsilon (t) = v (t) - q(t)$.


An ideal signal reconstruction with an ideal rectangular low-pass filter is assumed here for the sink signal  $v (t)$. 



Notes:


Questions

1

With how many bits  $(N)$  is each quantized sample represented?

$N \ = \ $

2

What is the sampling rate  $f_{\rm A} $?

$f_{\rm A} \ = \ $

$ \ \rm kHz $

3

Does this satisfy the sampling theorem?

Yes,
no.

4

Is the sink SNR  $\rho_{v}$  at ISDN limited by the following effects?

Sampling  (if sampling theorem is satisfied),
AWGN noise  (transmission error).


Solution

(1)  The quantization level number  $M$  is usually chosen as a power of two and for the number of bits  $N = {\log_2}\hspace{0.05cm}(M)$.

  • From  $M = 2^{8} = 256$  follows  $\underline{N = 8}$.


(2)  For the bit rate,  $R_{\rm B} = N \cdot f_{\rm A}$.

  • Thus,  from  $R_{\rm B} = 64 \ \rm kbit/s$  and  $N = 8$,  we get  $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.


(3)  Due to the bandwidth limitation,  the highest frequency contained in the signal  $q(t)$  is equal to  $3.4 \ \rm kHz$.

  • Therefore,  according to the sampling theorem,  $f_{\rm A} ≥ 6.8 \ \rm kHz$  should hold.
  • With  $f_{\rm A} = 8 \ \rm kHz$  the condition is fulfilled   ⇒   $\underline {\rm YES}$.


(4)  The  last statement  is correct:

  • Even if the influence of the AWGN noise is small  $($small noise power density  $N_{0})$,  the sink SNR  $\rho_{v}$  cannot fall below a limit given by the quantization noise:
$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
  • With larger noise interference,  $\rho_{v}$  can further  (significantly)  be reduced by the transmission errors.
  • In contrast,  sampling results in no loss of quality if the sampling theorem is obeyed.
  • Sampling can then be completely undone if the source signal  $q(t)$  is bandlimited and the signal reconstruction is correctly dimensioned   ⇒   ideal low-pass.