Difference between revisions of "Aufgaben:Exercise 1.4: "Pointer diagram" and "Locality Curve""

From LNTwww
m
m
Line 46: Line 46:
 
{Using $s(t)$, give the equation for  $s_+(t)$  and simplify it. Which equation is valid for the equivalent low-pass signal?
 
{Using $s(t)$, give the equation for  $s_+(t)$  and simplify it. Which equation is valid for the equivalent low-pass signal?
 
|type="()"}
 
|type="()"}
- Es gilt   $s_{\rm TP}(t) = A_0 · {\rm e}^{–{\rm j}ω_0t}.$
+
-   $s_{\rm TP}(t) = A_0 · {\rm e}^{–{\rm j}ω_0t}.$
- Es gilt   $s_{\rm TP}(t) = A_{\rm T} + A_0 · {\rm e}^{+{\rm j}ω_0t}.$
+
-   $s_{\rm TP}(t) = A_{\rm T} + A_0 · {\rm e}^{+{\rm j}ω_0t}.$
+ Es gilt   $s_{\rm TP}(t) =  A_{\rm T} + A_0 · \cos(ω_0t).$
+
+   $s_{\rm TP}(t) =  A_{\rm T} + A_0 · \cos(ω_0t).$
  
{Bestimmen Sie den Signalparameter  $f_0$.
+
{Determine the signal parameter  $f_0$.
 
|type="{}"}
 
|type="{}"}
 
$f_0 \ = \ $  { 20 3% } $\ \text{kHz}$
 
$f_0 \ = \ $  { 20 3% } $\ \text{kHz}$
  
{Bestimmen Sie die weiteren Signalparameter  $A_{\rm T}$  und  $A_0$.
+
{Determine the additional signal parameters  $A_{\rm T}$  and  $A_0$.
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm T} \ = \ $ {  1 3% }  
 
$A_{\rm T} \ = \ $ {  1 3% }  
Line 60: Line 60:
  
  
{Berechnen Sie die Werte des analytischen Signals  $s_+(t)$  zu den Zeiten  $t = 15 \;{\rm µ s}$  und  $t = 20\;{\rm µ s}$.
+
{Calculate the values of the analytical signal  $s_+(t)$  at times  $t = 15 \;{\rm µ s}$  and  $t = 20\;{\rm µ s}$.
 
|type="{}"}
 
|type="{}"}
 
$s_+(t = 15 \ \rm µ s) \ = \ $ { -0.865--0.825 }
 
$s_+(t = 15 \ \rm µ s) \ = \ $ { -0.865--0.825 }
Line 67: Line 67:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Alle Cosinusfunktionen sind in entsprechende komplexe Exponentialfunktionen umzuwandeln:
+
'''(1)'''&nbsp; Convert all cosine functions to corresponding complex exponential functions:
 
:$$s_+(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} + \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.05cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} - \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.03cm}t}  =  {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ \frac{A_0}{2} \cdot \left( {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t} + {\rm e}^{\hspace{0.03cm}-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t}\right)\right]\hspace{0.05cm}.$$
 
:$$s_+(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} + \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.05cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} - \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.03cm}t}  =  {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ \frac{A_0}{2} \cdot \left( {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t} + {\rm e}^{\hspace{0.03cm}-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t}\right)\right]\hspace{0.05cm}.$$
*Mit der Gleichung&nbsp; ${\rm e}^{{\rm j} \hspace{0.05cm}· \hspace{0.05cm}α} + {\rm e}^{-{\rm j} \hspace{0.05cm}·\hspace{0.05cm} α} = 2 · \cos(α)$&nbsp; folgt weiter:
+
*Using the equation&nbsp; ${\rm e}^{{\rm j} \hspace{0.05cm}· \hspace{0.05cm}α} + {\rm e}^{-{\rm j} \hspace{0.05cm}·\hspace{0.05cm} α} = 2 · \cos(α)$&nbsp; it further follows that:
 
:$$s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \right] \hspace{0.05cm}.$$
 
:$$s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \right] \hspace{0.05cm}.$$
*Damit erhält man für das äquivalente Tiefpass–Signal:
+
*Thus, for the equivalent lowpass signal, we obtain:
 
:$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \hspace{0.05cm}.$$
 
:$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \hspace{0.05cm}.$$
Richtig ist also der <u>letzte Lösungsvorschlag</u>.  
+
Therefore the <u>last answer</u> is correct.  
*Im Kapitel "Hüllkurvendemodulation" des vorliegenden Buches werden wir sehen, dass es sich dabei um die ''Zweiseitenband–Amplitudenmodulation eines Cosinussignals mit cosinusförmigem Träger'' handelt.
+
*In the chapter "Envelope Demodulation" of the present book we will see that we are dealing with ''double sideband amplitude modulation of a cosine signal with a cosine carrier''.
  
  
  
'''(2)'''&nbsp; Die Periodendauer des analytischen Signals&nbsp; $s_+(t)$&nbsp; beträgt&nbsp; $T_0 = 50$&nbsp; μs.   
+
'''(2)'''&nbsp; The period of the analytical signal &nbsp; $s_+(t)$&nbsp; is&nbsp; $T_0 = 50$&nbsp; μs.   
*Das physikalische Signal&nbsp; $s(t)$&nbsp; hat die gleiche Periodendauer.  
+
*The physical signal&nbsp; $s(t)$&nbsp; has the same period duration.  
*Unter der Voraussetzung, dass&nbsp; $f_{\rm T}$&nbsp; ein ganzzahliges Vielfaches von&nbsp; $f_0$&nbsp; ist&nbsp; (was stets zu überprüfen ist, aber für dieses Beispiel zutrifft), ergibt sich&nbsp;
+
*Assuming that &nbsp; $f_{\rm T}$&nbsp;is an integer multiple of &nbsp; $f_0$&nbsp;(which always first needs confirming, but is true for this example), this results in
 
:$$f_0 = 1/T_0 \hspace{0.15cm}\underline{ = 20 \ \rm kHz}.$$
 
:$$f_0 = 1/T_0 \hspace{0.15cm}\underline{ = 20 \ \rm kHz}.$$
  
  
  
'''(3)'''&nbsp; Bei den gegebenen Zeitpunkten&nbsp; (Vielfache von&nbsp; $5$&nbsp; μs)&nbsp; gilt für den komplexen Drehzeiger des Trägers:
+
'''(3)'''&nbsp; At the given times (multiples of $5$&nbsp; μs), the following applies to the complex rotating pointer of the carrier:
:$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{falls}} \\ {\rm{falls}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm gerade} , \\ k \hspace{0.1cm}{\rm ungerade} . \\ \end{array}$$
+
:$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{if}} \\ {\rm{if}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm even} , \\ k \hspace{0.1cm}{\rm odd} . \\ \end{array}$$
*Deshalb folgt aus der in der Teilaufgabe&nbsp; '''(1)'''&nbsp; berechneten Gleichung:
+
*Therefore, it follows from the equation calculated in Question&nbsp; '''(1)''' :
 
:$$k = 0  \Rightarrow  \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm},$$  
 
:$$k = 0  \Rightarrow  \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm},$$  
 
:$$k = 5  \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm &micro; s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot {T_0}/{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$
 
:$$k = 5  \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm &micro; s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot {T_0}/{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$

Revision as of 18:51, 11 November 2021

Vorgegebenes analytisches Signal in der komplexen Ebene

The accompanying graph shows the analytical signal  $s_+(t)$  in the complex plane.

  • The numbers shown in the rectangles indicate the time points in microseconds.
  • For all multiples of  $5 \ \rm µ s$ ,  $s_+(t)$  is always real with the following values:
$$s_+(t = 0) =s_+(t = 50\;{\rm µ s})= 1.500\hspace{0.05cm},$$
$$s_+(t = 5\;{\rm µ s}) = s_+(t = 45\;{\rm µ s})= -1.405\hspace{0.05cm},$$
$$s_+(t = 10\;{\rm µ s}) = s_+(t = 40\;{\rm µ s})= 1.155\hspace{0.05cm},$$
$$\text{.....................................} $$
$$s_+(t = 25\;{\rm µ s}) = -0.500\hspace{0.05cm}.$$

It is assumed that the corresponding physical signal has the following form:

$$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T}\cdot t\right) + {A_0}/{2}\cdot \cos\left(\left(\omega_{\rm T} + \omega_{\rm 0}\right)\cdot t \right) + {A_0}/{2}\cdot \cos\left(\left(\omega_{\rm T} - \omega_{\rm 0}\right)\cdot t \right)\hspace{0.05cm}.$$
  • The frequency of the carrier signal is given as  $f_{\rm T} = 100\text{ kHz}$.
  • The three further parameters $f_0$,  $A_{\rm T}$  and  $A_0$ are to be determined.


Reference will also be made to the  equivalent lowpass signal  $s_{\rm TP}(t)$, with the following relationship to the analytical signal:

$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} \hspace{0.05cm}.$$





Hints:

(1)   Harmonic Oscillation,
(2)  Analytical Signal and its Spectral Function
(3)  Equivalent Low-Pass Signal and its Spectral Function.
  • In our tutorial $\rm LNTwww$, the plot of the analytical signal $s_+(t)$  n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
(1)  Physical & Analytic Signal,
(2)  Physical Signal & Equivalent Lowpass Signal.



Questions

1

Using $s(t)$, give the equation for  $s_+(t)$  and simplify it. Which equation is valid for the equivalent low-pass signal?

  $s_{\rm TP}(t) = A_0 · {\rm e}^{–{\rm j}ω_0t}.$
  $s_{\rm TP}(t) = A_{\rm T} + A_0 · {\rm e}^{+{\rm j}ω_0t}.$
  $s_{\rm TP}(t) = A_{\rm T} + A_0 · \cos(ω_0t).$

2

Determine the signal parameter  $f_0$.

$f_0 \ = \ $

$\ \text{kHz}$

3

Determine the additional signal parameters  $A_{\rm T}$  and  $A_0$.

$A_{\rm T} \ = \ $

$A_0 \ = \ $

4

Calculate the values of the analytical signal  $s_+(t)$  at times  $t = 15 \;{\rm µ s}$  and  $t = 20\;{\rm µ s}$.

$s_+(t = 15 \ \rm µ s) \ = \ $

$s_+(t = 20 \ \rm µ s) \ = \ $


Solution

(1)  Convert all cosine functions to corresponding complex exponential functions:

$$s_+(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} + \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.05cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} - \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.03cm}t} = {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ \frac{A_0}{2} \cdot \left( {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t} + {\rm e}^{\hspace{0.03cm}-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t}\right)\right]\hspace{0.05cm}.$$
  • Using the equation  ${\rm e}^{{\rm j} \hspace{0.05cm}· \hspace{0.05cm}α} + {\rm e}^{-{\rm j} \hspace{0.05cm}·\hspace{0.05cm} α} = 2 · \cos(α)$  it further follows that:
$$s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \right] \hspace{0.05cm}.$$
  • Thus, for the equivalent lowpass signal, we obtain:
$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \hspace{0.05cm}.$$

Therefore the last answer is correct.

  • In the chapter "Envelope Demodulation" of the present book we will see that we are dealing with double sideband amplitude modulation of a cosine signal with a cosine carrier.


(2)  The period of the analytical signal   $s_+(t)$  is  $T_0 = 50$  μs.

  • The physical signal  $s(t)$  has the same period duration.
  • Assuming that   $f_{\rm T}$ is an integer multiple of   $f_0$ (which always first needs confirming, but is true for this example), this results in
$$f_0 = 1/T_0 \hspace{0.15cm}\underline{ = 20 \ \rm kHz}.$$


(3)  At the given times (multiples of $5$  μs), the following applies to the complex rotating pointer of the carrier:

$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{if}} \\ {\rm{if}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm even} , \\ k \hspace{0.1cm}{\rm odd} . \\ \end{array}$$
  • Therefore, it follows from the equation calculated in Question  (1) :
$$k = 0 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm},$$
$$k = 5 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm µ s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot {T_0}/{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$
  • Ein Vergleich mit der ersten und letzten Gleichung auf dem Angabenblatt zeigt:
$$ s_{\rm +}(t = 0) = A_{\rm T}+ {A_0}=1.5 \hspace{0.05cm}, $$
$$ s_{\rm +}(t = 25\;{\rm \mu s}) = -A_{\rm T}+ {A_0} = -0.5 \hspace{0.05cm}.$$
  • Daraus erhält man  $A_{\rm T} \hspace{0.15cm}\underline{ = 1}$  und  $A_0 \hspace{0.15cm}\underline{ = 0.5}$.


(4)  Zum Zeitpunkt  $t = 15$ μs  $(k = 3$, ungerade$)$  gilt:

$$ s_{\rm +}(t = 15\;{\rm µ s}) = - \left[ 1+ 0.5 \cdot \cos (2 \pi \cdot 20\,{\rm kHz} \cdot 0.015\,{\rm ms}) \right] \hspace{0.05cm} = -1- 0.5 \cdot \cos (108^{\circ})\hspace{0.15cm}\underline {= -0.845} \hspace{0.05cm}.$$
  • Dagegen ergibt sich für den Zeitpunkt  $t = 20$  μs  $(k = 4$, gerade$)$:
$$ s_{\rm +}(t = 20\;{\rm µ s}) = 1 + 0.5 \cdot \cos (144^{\circ})\hspace{0.15cm}\underline {= 0.595} \hspace{0.05cm}.$$

Bei allen diesen betrachteten Zeitpunkten ist das physikalische Signal $s(t) = {\rm Re}[s_+(t)]$ genau so groß.