Difference between revisions of "Aufgaben:Exercise 1.4: "Pointer diagram" and "Locality Curve""

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/ Allgemeines Modell der Modulation}} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“)
 
m
 
(45 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/ Allgemeines Modell der Modulation}}
+
{{quiz-Header|Buchseite=Modulation_Methods/General_Model_of_Modulation}}
 +
[[File:P_ID966__Mod_A_1_4_neu.png|right|frame|A given analytical signal in the complex plane]]
 +
The accompanying graph shows the analytical signal &nbsp;$s_+(t)$&nbsp; in the complex plane.
 +
*The numbers shown in the rectangles indicate the time points in microseconds.
 +
*For all multiples of &nbsp;$5 \ \rm &micro; s$&nbsp;, &nbsp;$s_+(t)$&nbsp; is always real with the following values:
 +
:$$s_+(t = 0) =s_+(t = 50\;{\rm &micro; s})= 1.500\hspace{0.05cm},$$
 +
:$$s_+(t = 5\;{\rm &micro; s})  =  s_+(t = 45\;{\rm &micro; s})= -1.405\hspace{0.05cm},$$
 +
:$$s_+(t = 10\;{\rm &micro; s})  =  s_+(t = 40\;{\rm &micro; s})= 1.155\hspace{0.05cm},$$
 +
:$$\text{.....................................} $$
 +
:$$s_+(t = 25\;{\rm &micro; s}) =  -0.500\hspace{0.05cm}.$$
 +
It is assumed that the corresponding physical signal has the following form:
 +
:$$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T}\cdot t\right) + {A_0}/{2}\cdot \cos\left(\left(\omega_{\rm T} + \omega_{\rm 0}\right)\cdot t \right) + {A_0}/{2}\cdot \cos\left(\left(\omega_{\rm T} - \omega_{\rm 0}\right)\cdot t \right)\hspace{0.05cm}.$$
 +
*The frequency of the carrier signal is given as  &nbsp;$f_{\rm T} = 100\text{ kHz}$.
 +
*The three further parameters&nbsp;$f_0$, &nbsp;$A_{\rm T}$&nbsp; and &nbsp;$A_0$ are to be determined.
  
[[File:|right|]]
 
  
 +
Reference will also be made to the &nbsp;[[Modulation_Methods/General_Model_of_Modulation#Describing_the_physical_signal_using_the_equivalent_low-pass_signal|equivalent lowpass signal]] &nbsp;$s_{\rm TP}(t)$, with the following relationship to the analytical signal:
 +
:$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} \hspace{0.05cm}.$$
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter &nbsp; [[Modulation_Methods/General_Model_of_Modulation|General Model of Modulation]].
 +
*Particular reference is made to the page&nbsp;  [[Modulation_Methods/General_Model_of_Modulation#Describing_the_physical_signal_using_the_equivalent_low-pass_signal|Describing the physical signal using the equivalent low-pass signal]].
 +
*You will find further information on these topics in these chapters of the book "Signal Representation":
 +
::(1) &nbsp; [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]],
 +
::(2)&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]],&nbsp;
 +
::(3)&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function| Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*In our tutorial $\rm LNTwww$, the plot of the analytical signal&nbsp;$s_+(t)$&nbsp; n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal &nbsp;$s_{\rm TP}(t)$&nbsp;. We refer you to the corresponding interactive Applets
 +
::(1) &nbsp;[[Applets:Physical_Signal_%26_Analytic_Signal|Physical and analytic signal]],
 +
::(2) &nbsp;[[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical signal and equivalent low-pass signal]].
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Using $s(t)$, give the equation for &nbsp;$s_+(t)$&nbsp; and simplify it. Which equation is valid for the equivalent low-pass signal?
|type="[]"}
+
|type="()"}
- Falsch
+
- &nbsp; $s_{\rm TP}(t) = A_0 · {\rm e}^{–{\rm j}ω_0t}.$
+ Richtig
+
- &nbsp; $s_{\rm TP}(t) = A_{\rm T} + A_0 · {\rm e}^{+{\rm j}ω_0t}.$
 +
+ &nbsp; $s_{\rm TP}(t) =  A_{\rm T} + A_0 · \cos(ω_0t).$
  
 +
{Determine the signal parameter &nbsp;$f_0$.
 +
|type="{}"}
 +
$f_0 \ = \ $  { 20 3% } $\ \text{kHz}$
  
{Input-Box Frage
+
{Determine the additional signal parameters &nbsp;$A_{\rm T}$&nbsp; and &nbsp;$A_0$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$A_{\rm T} \ = \ $ {  1 3% }
 +
$A_0 \ = \ $ { 0.5 3% }
  
  
 +
{Calculate the values of the analytical signal &nbsp;$s_+(t)$&nbsp; at times &nbsp;$t = 15 \;{\rm &micro; s}$&nbsp; and &nbsp;$t = 20\;{\rm &micro; s}$.
 +
|type="{}"}
 +
$s_+(t = 15 \ \rm &micro; s) \ = \ $ { -0.865--0.825 }
 +
$s_+(t = 20 \ \rm &micro;  s) \ = \ $ { 0.595 3% }
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Convert all cosine functions to corresponding complex exponential functions:
'''2.'''
+
:$$s_+(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} + \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.05cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} - \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.03cm}t}  =  {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ \frac{A_0}{2} \cdot \left( {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t} + {\rm e}^{\hspace{0.03cm}-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t}\right)\right]\hspace{0.05cm}.$$
'''3.'''
+
*Using the equation&nbsp; ${\rm e}^{{\rm j} \hspace{0.05cm}· \hspace{0.05cm}α} + {\rm e}^{-{\rm j} \hspace{0.05cm}·\hspace{0.05cm} α} = 2 · \cos(α)$&nbsp; it further follows that:
'''4.'''
+
:$$s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \right] \hspace{0.05cm}.$$
'''5.'''
+
*Thus, for the equivalent lowpass signal, we obtain:
'''6.'''
+
:$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \hspace{0.05cm}.$$
'''7.'''
+
Therefore the <u>last answer</u> is correct.
 +
*In the chapter&nbsp;  "Envelope Demodulation"&nbsp; of the present book we will see that we are dealing with&nbsp; "DSB-AM of a cosine signal with a cosine carrier".
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The period of the analytical signal&nbsp; $s_+(t)$&nbsp; is&nbsp; $T_0 = 50$&nbsp; μs. 
 +
*The physical signal&nbsp; $s(t)$&nbsp; has the same period duration.
 +
*Assuming that&nbsp; $f_{\rm T}$&nbsp;is an integer multiple of&nbsp; $f_0$&nbsp; (which always first needs confirming, but is true for this example),&nbsp; this results in
 +
:$$f_0 = 1/T_0 \hspace{0.15cm}\underline{ = 20 \ \rm kHz}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; At the given times&nbsp; (multiples of $5$&nbsp; μs),&nbsp; the following applies to the complex rotating pointer of the carrier:
 +
:$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{if}} \\ {\rm{if}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm even} , \\ k \hspace{0.1cm}{\rm odd} . \\ \end{array}$$
 +
*Therefore,&nbsp; it follows from the equation calculated in Question&nbsp; '''(1)''':
 +
:$$k = 0  \Rightarrow  \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm},$$
 +
:$$k = 5  \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm &micro; s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot {T_0}/{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$
 +
*A comparison with the first and last equation on the sheet shows:
 +
:$$ s_{\rm +}(t = 0)  =  A_{\rm T}+ {A_0}=1.5 \hspace{0.05cm}, $$
 +
:$$ s_{\rm +}(t = 25\;{\rm \mu s})  =  -A_{\rm T}+ {A_0} = -0.5 \hspace{0.05cm}.$$
 +
*This gives&nbsp; $A_{\rm T} \hspace{0.15cm}\underline{ = 1}$&nbsp; and&nbsp; $A_0 \hspace{0.15cm}\underline{ = 0.5}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; At time&nbsp; $t = 15$ μs&nbsp; $(k = 3$,&nbsp; odd$)$&nbsp; it holds that:
 +
:$$ s_{\rm +}(t = 15\;{\rm &micro; s})  =  - \left[ 1+ 0.5 \cdot \cos (2 \pi \cdot 20\,{\rm kHz} \cdot 0.015\,{\rm ms}) \right] \hspace{0.05cm}  =  -1- 0.5 \cdot \cos (108^{\circ})\hspace{0.15cm}\underline {= -0.845} \hspace{0.05cm}.$$
 +
*In contrast, for time &nbsp; $t = 20$&nbsp; μs&nbsp; $(k = 4$,&nbsp; even$)$:
 +
:$$ s_{\rm +}(t = 20\;{\rm &micro; s}) = 1 + 0.5 \cdot \cos (144^{\circ})\hspace{0.15cm}\underline {= 0.595} \hspace{0.05cm}.$$
 +
At all these considered time points, the physical signal $s(t) = {\rm Re}[s_+(t)]$ is exactly as large.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^1.3 Allgemeines Modell der Modulation ^]]
+
[[Category:Modulation Methods: Exercises|^1.3 General Model of Modulation ^]]

Latest revision as of 13:19, 24 March 2022

A given analytical signal in the complex plane

The accompanying graph shows the analytical signal  $s_+(t)$  in the complex plane.

  • The numbers shown in the rectangles indicate the time points in microseconds.
  • For all multiples of  $5 \ \rm µ s$ ,  $s_+(t)$  is always real with the following values:
$$s_+(t = 0) =s_+(t = 50\;{\rm µ s})= 1.500\hspace{0.05cm},$$
$$s_+(t = 5\;{\rm µ s}) = s_+(t = 45\;{\rm µ s})= -1.405\hspace{0.05cm},$$
$$s_+(t = 10\;{\rm µ s}) = s_+(t = 40\;{\rm µ s})= 1.155\hspace{0.05cm},$$
$$\text{.....................................} $$
$$s_+(t = 25\;{\rm µ s}) = -0.500\hspace{0.05cm}.$$

It is assumed that the corresponding physical signal has the following form:

$$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T}\cdot t\right) + {A_0}/{2}\cdot \cos\left(\left(\omega_{\rm T} + \omega_{\rm 0}\right)\cdot t \right) + {A_0}/{2}\cdot \cos\left(\left(\omega_{\rm T} - \omega_{\rm 0}\right)\cdot t \right)\hspace{0.05cm}.$$
  • The frequency of the carrier signal is given as  $f_{\rm T} = 100\text{ kHz}$.
  • The three further parameters $f_0$,  $A_{\rm T}$  and  $A_0$ are to be determined.


Reference will also be made to the  equivalent lowpass signal  $s_{\rm TP}(t)$, with the following relationship to the analytical signal:

$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} \hspace{0.05cm}.$$



Hints:

(1)   Harmonic Oscillation,
(2)  Analytical Signal and its Spectral Function
(3)  Equivalent Low-Pass Signal and its Spectral Function.
  • In our tutorial $\rm LNTwww$, the plot of the analytical signal $s_+(t)$  n the complex plane is sometimes referred to as the "pointer diagram", while the "locus curve" gives the time course of the equivalent lowpass signal  $s_{\rm TP}(t)$ . We refer you to the corresponding interactive Applets
(1)  Physical and analytic signal,
(2)  Physical signal and equivalent low-pass signal.



Questions

1

Using $s(t)$, give the equation for  $s_+(t)$  and simplify it. Which equation is valid for the equivalent low-pass signal?

  $s_{\rm TP}(t) = A_0 · {\rm e}^{–{\rm j}ω_0t}.$
  $s_{\rm TP}(t) = A_{\rm T} + A_0 · {\rm e}^{+{\rm j}ω_0t}.$
  $s_{\rm TP}(t) = A_{\rm T} + A_0 · \cos(ω_0t).$

2

Determine the signal parameter  $f_0$.

$f_0 \ = \ $

$\ \text{kHz}$

3

Determine the additional signal parameters  $A_{\rm T}$  and  $A_0$.

$A_{\rm T} \ = \ $

$A_0 \ = \ $

4

Calculate the values of the analytical signal  $s_+(t)$  at times  $t = 15 \;{\rm µ s}$  and  $t = 20\;{\rm µ s}$.

$s_+(t = 15 \ \rm µ s) \ = \ $

$s_+(t = 20 \ \rm µ s) \ = \ $


Solution

(1)  Convert all cosine functions to corresponding complex exponential functions:

$$s_+(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} + \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.05cm}t} + \frac{A_0}{2}\cdot {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}(\omega_{\rm T} - \omega_{\rm 0})\hspace{0.03cm}\cdot \hspace{0.03cm}t} = {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ \frac{A_0}{2} \cdot \left( {\rm e}^{\hspace{0.03cm}{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t} + {\rm e}^{\hspace{0.03cm}-{\rm j} \cdot \hspace{0.03cm}\omega_{\rm 0}\cdot \hspace{0.05cm}t}\right)\right]\hspace{0.05cm}.$$
  • Using the equation  ${\rm e}^{{\rm j} \hspace{0.05cm}· \hspace{0.05cm}α} + {\rm e}^{-{\rm j} \hspace{0.05cm}·\hspace{0.05cm} α} = 2 · \cos(α)$  it further follows that:
$$s_+(t) = {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.03cm}t} \cdot \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \right] \hspace{0.05cm}.$$
  • Thus, for the equivalent lowpass signal, we obtain:
$$s_{\rm TP}(t) = s_+(t) \cdot {\rm e}^{-{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}\omega_{\rm T}\cdot \hspace{0.05cm}t} = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot t) \hspace{0.05cm}.$$

Therefore the last answer is correct.

  • In the chapter  "Envelope Demodulation"  of the present book we will see that we are dealing with  "DSB-AM of a cosine signal with a cosine carrier".


(2)  The period of the analytical signal  $s_+(t)$  is  $T_0 = 50$  μs.

  • The physical signal  $s(t)$  has the same period duration.
  • Assuming that  $f_{\rm T}$ is an integer multiple of  $f_0$  (which always first needs confirming, but is true for this example),  this results in
$$f_0 = 1/T_0 \hspace{0.15cm}\underline{ = 20 \ \rm kHz}.$$


(3)  At the given times  (multiples of $5$  μs),  the following applies to the complex rotating pointer of the carrier:

$${\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm} {100\,{\rm kHz}}\cdot \hspace{0.05cm}(k \hspace{0.05cm}\cdot \hspace{0.05cm} 5\,{\rm \mu s})} = {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}k \hspace{0.03cm} \cdot \hspace{0.05cm} \pi } = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{if}} \\ {\rm{if}} \\ \end{array}\begin{array}{*{20}c} k \hspace{0.1cm}{\rm even} , \\ k \hspace{0.1cm}{\rm odd} . \\ \end{array}$$
  • Therefore,  it follows from the equation calculated in Question  (1):
$$k = 0 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 0) = A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot 0) = A_{\rm T}+ {A_0} \hspace{0.05cm},$$
$$k = 5 \Rightarrow \hspace{0.2cm} s_{\rm +}(t = 25\;{\rm µ s}) = - \left[ A_{\rm T}+ {A_0} \cdot \cos (\omega_{\rm 0}\cdot {T_0}/{2}) \right] = -A_{\rm T}+ {A_0} \hspace{0.05cm}.$$
  • A comparison with the first and last equation on the sheet shows:
$$ s_{\rm +}(t = 0) = A_{\rm T}+ {A_0}=1.5 \hspace{0.05cm}, $$
$$ s_{\rm +}(t = 25\;{\rm \mu s}) = -A_{\rm T}+ {A_0} = -0.5 \hspace{0.05cm}.$$
  • This gives  $A_{\rm T} \hspace{0.15cm}\underline{ = 1}$  and  $A_0 \hspace{0.15cm}\underline{ = 0.5}$.


(4)  At time  $t = 15$ μs  $(k = 3$,  odd$)$  it holds that:

$$ s_{\rm +}(t = 15\;{\rm µ s}) = - \left[ 1+ 0.5 \cdot \cos (2 \pi \cdot 20\,{\rm kHz} \cdot 0.015\,{\rm ms}) \right] \hspace{0.05cm} = -1- 0.5 \cdot \cos (108^{\circ})\hspace{0.15cm}\underline {= -0.845} \hspace{0.05cm}.$$
  • In contrast, for time   $t = 20$  μs  $(k = 4$,  even$)$:
$$ s_{\rm +}(t = 20\;{\rm µ s}) = 1 + 0.5 \cdot \cos (144^{\circ})\hspace{0.15cm}\underline {= 0.595} \hspace{0.05cm}.$$

At all these considered time points, the physical signal $s(t) = {\rm Re}[s_+(t)]$ is exactly as large.