Difference between revisions of "Aufgaben:Exercise 1.4: Nyquist Criteria"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Eigenschaften von Nyquistsystemen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Properties_of_Nyquist_Systems
 
}}
 
}}
  
  
[[File:P_ID1278__Dig_A_1_4.png|right|frame|Rechteckförmiges Nyquistspektrum]]
+
[[File:P_ID1278__Dig_A_1_4.png|right|frame|Rectangular Nyquist spectrum]]
Durch die Skizze gegeben ist das Spektrum  $G(f)$  des Detektionsgrundimpulses, wobei der Parameter  $A$  noch zu bestimmen ist. Überprüft werden soll unter anderem, ob dieser Detektionsgrundimpuls eines der beiden Nyquistkriterien erfüllt. Diese lauten:
+
Given by the sketch is the spectrum  $G(f)$  of the basic detection pulse,  where the parameter  $A$  is still to be determined.  Among other things it is to be checked whether this basic detection pulse fulfills one of the two Nyquist criteria.  These are:
*Das '''erste Nyquistkriterium''' ist erfüllt, wenn für die Spektralfunktion gilt:
+
*The  '''first Nyquist criterion'''  is fulfilled if for the spectral function holds:
 
:$$\sum_{k = -\infty}^{+\infty} G(f -
 
:$$\sum_{k = -\infty}^{+\infty} G(f -
 
{k}/{T} ) =  {\rm const.}$$
 
{k}/{T} ) =  {\rm const.}$$
:In diesem Fall besitzt der Impuls  $g(t)$  für alle ganzzahligen Werte von  $ν$  mit Ausnahme von  $ν = 0$  Nulldurchgänge bei  $t = ν \cdot T$. Für die gesamte Aufgabe wird  $T = 0.1 \, \rm  ms$  vorausgesetzt.
+
:In this case,  the pulse  $g(t)$  has zero crossings at  $t = ν \cdot T$  for all integer values of  $ν$  except  $ν = 0$.  For the entire exercise,  $T = 0.1 \, \rm  ms$  is assumed.
*Ist das '''zweite Nyquistkriterium''' erfüllt, so hat  $g(t)$  Nulldurchgänge bei  $\pm 1.5 T$,  $\pm 2.5 T$, usw.
+
*If the  '''second Nyquist criterion'''  is satisfied,  $g(t)$  has zero crossings at  $\pm 1.5 T$,  $\pm 2.5 T$, etc.
  
  
Line 16: Line 16:
  
  
''Hinweise:''
+
Notes:  
*Die Aufgabe gehört zum  Kapitel  [[Digital_Signal_Transmission/Eigenschaften_von_Nyquistsystemen|Eigenschaften von Nyquistsystemen]].
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems|"Properties of Nyquist Systems"]].
 
   
 
   
*Als bekannt vorausgesetzt werden die beiden Gleichungen:
+
*The two equations are assumed to be known:
 
:$$X(f)  =  \left\{ \begin{array}{c} A  \\ 0 \\\end{array} \right.\quad
 
:$$X(f)  =  \left\{ \begin{array}{c} A  \\ 0 \\\end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\hspace{0.15cm}|f| < f_0 \hspace{0.05cm},
+
\begin{array}{*{1}c} {\rm{for}}\hspace{0.15cm}|f| < f_0 \hspace{0.05cm},
\\  {\rm{f\ddot{u}r}}\hspace{0.15cm}|f| > f_0  \hspace{0.08cm} \\
+
\\  {\rm{for}}\hspace{0.15cm}|f| > f_0  \hspace{0.08cm} \\
 
\end{array} \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} x(t)
 
\end{array} \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} x(t)
=2 \cdot A \cdot f_0 \cdot {\rm si}(2 \pi f_0 T) \hspace{0.05cm},$$
+
=2 \cdot A \cdot f_0 \cdot {\rm si}(2 \pi f_0 T) \hspace{0.05cm},\hspace{0.4cm} {\rm si} (x) = \sin(x)/x\hspace{0.05cm},$$
 
:$$\sin(\alpha) \cdot \cos (\beta)  =  \frac{1}{2} \cdot \big[ \sin(\alpha - \beta) + \sin(\alpha + \beta)\big]
 
:$$\sin(\alpha) \cdot \cos (\beta)  =  \frac{1}{2} \cdot \big[ \sin(\alpha - \beta) + \sin(\alpha + \beta)\big]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 30: Line 30:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Erfüllt der vorgegebene Impuls &nbsp;$g(t)$&nbsp; das erste Nyquistkriterium?
+
{Does the given pulse &nbsp;$g(t)$&nbsp; satisfy the first Nyquist criterion?
 
|type="()"}
 
|type="()"}
+Das erste Nyquistkriterium wird erfüllt
+
+The first Nyquist criterion is fulfilled.
-Das erste Nyquistkriterium wird nicht erfüllt.
+
-The first Nyquist criterion is not fulfilled.
  
  
{Bestimmen Sie den Parameter &nbsp;$A$&nbsp; derart, dass &nbsp;$g(t = 0) = 2\, \rm V$&nbsp; gilt.
+
{Determine the parameter &nbsp;$A$&nbsp; such that &nbsp;$g(t = 0) = 2\, \rm V$&nbsp; holds.
 
|type="{}"}
 
|type="{}"}
 
$A \ = \ $ { 0.2 3% } $ \ \rm mV/Hz$
 
$A \ = \ $ { 0.2 3% } $ \ \rm mV/Hz$
  
{Berechnen Sie &nbsp;$g(t)$&nbsp; aus &nbsp;$G(f)$&nbsp; durch Anwendung der Fourierrücktransformation. <br>Welcher (normierte) Funktionswert ergibt sich bei &nbsp;$t = T$?
+
{Calculate &nbsp;$g(t)$&nbsp; from &nbsp;$G(f)$&nbsp; by applying the inverse  Fourier transform.&nbsp; What&nbsp; (normalized)&nbsp; function value is obtained at &nbsp;$t = T$?
 
|type="{}"}
 
|type="{}"}
 
$ g(t = T)/g(t = 0) \ = \ $ { 0. }
 
$ g(t = T)/g(t = 0) \ = \ $ { 0. }
  
{Welcher (normierte) Wert ergibt sich für &nbsp;$t = 2.5T$?
+
{Which&nbsp; (normalized)&nbsp; value results for &nbsp;$t = 2.5T$?
 
|type="{}"}
 
|type="{}"}
 
$g(t = 2.5 T)/g(t = 0)\ = \ $ { -0.39346--0.37054 }
 
$g(t = 2.5 T)/g(t = 0)\ = \ $ { -0.39346--0.37054 }
  
{Erfüllt der Impuls &nbsp;$g(t)$&nbsp; das zweite Nyquistkriterium?
+
{Does the pulse &nbsp;$g(t)$&nbsp; satisfy the second Nyquist criterion?
 
|type="()"}
 
|type="()"}
-Das zweite Nyquistkriterium wird erfüllt.
+
-The second Nyquist criterion is fulfilled.
+Das zweite Nyquistkriterium wird nicht erfüllt.
+
+The second Nyquist criterion is not fulfilled.
  
  
Line 60: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die folgende Grafik zeigt das Spektrum (der Index „Per” steht hier für „Periodische Fortsetzung”):
+
'''(1)'''&nbsp; The following diagram shows the spectrum&nbsp; (the index&nbsp; "Per"&nbsp; here stands for&nbsp; "Periodic Continuation"):
 +
[[File:P_ID1280__Dig_A_1_4a.png|right|frame|Illustration of the first Nyquist criterion]]
 +
 
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} G(f -
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} G(f -
 
\frac{k}{T} ) \hspace{0.05cm}.$$
 
\frac{k}{T} ) \hspace{0.05cm}.$$
*Die Laufvariable $k = 0$ gibt die ursprüngliche Spektralfunktion $G(f)$ an. Diese ist grau gefüllt.  
+
*The indexing variable&nbsp; $k = 0$&nbsp; indicates the original spectral function&nbsp; $G(f)$.&nbsp; This is filled in gray.
*Das um den Wert $1/T = 10\, \rm kHz$ nach rechts verschobene Spektrum gehört zu $k = 1$ und ist grün markiert, während $k =  -1$ zur gelb hinterlegten Funktion führt.  
+
*The spectrum shifted to the right by the value&nbsp; $1/T = 10\, \rm kHz$&nbsp; belongs to&nbsp; $k = 1$&nbsp; and is marked in green,&nbsp; while&nbsp; $k =  -1$&nbsp; leads to the function highlighted in yellow.
*Die roten und blauen Flächen kennzeichnen die Beiträge der Laufvariablen $k = 2$ und $k = - 2$.
+
*The red and blue areas mark the contributions of the indexing variables&nbsp; $k = 2$&nbsp; and&nbsp; $k = - 2$.
  
  
[[File:P_ID1280__Dig_A_1_4a.png|center|frame|Zur Verdeutlichung des ersten Nyquistkriteriums]]
+
It can be seen that&nbsp; $G_{\rm Per}(f)$&nbsp; is constant.&nbsp; From this it follows that the first Nyquist criterion is fulfilled &nbsp; &rArr; &nbsp; <u>solution 1</u>&nbsp; is correct.
Man erkennt, dass $G_{\rm Per}(f)$ konstant ist. Daraus folgt, dass das erste Nyquistkriterium erfüllt ist. Richtig ist demzufolge der <u>Lösungsvorschlag 1</u>.
 
  
  
'''(2)'''&nbsp; Aufgrund der Fourierintegrale gilt folgender Zusammenhang:
+
'''(2)'''&nbsp; Due to the Fourier integrals the following relation holds:
 
:$$g(t=0) =  \int_{-\infty}^{\infty}G(f) \,{\rm d} f
 
:$$g(t=0) =  \int_{-\infty}^{\infty}G(f) \,{\rm d} f
  = A \cdot ( 2\,{\rm kHz}+6\,{\rm kHz}+2\,{\rm kHz})= A \cdot 10\,{\rm kHz}\hspace{0.3cm}
+
  = A \cdot ( 2\,{\rm kHz}+6\,{\rm kHz}+2\,{\rm kHz})= A \cdot 10\,{\rm kHz}$$
\Rightarrow \hspace{0.3cm}A  = \frac{g(t=0)}{10\,{\rm kHz}}  = \frac{2\,{\rm V}}{10\,{\rm kHz}} \hspace{0.1cm}\underline {= 0.2 \, {\rm mV/Hz}} \hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}A  = \frac{g(t=0)}{10\,{\rm kHz}}  = \frac{2\,{\rm V}}{10\,{\rm kHz}} \hspace{0.1cm}\underline {= 0.2 \, {\rm mV/Hz}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Es gelte $g(t) = g_{1}(t) +g_{2}(t)$, wobei
+
'''(3)'''&nbsp; Let&nbsp; $g(t) = g_{1}(t) +g_{2}(t)$,&nbsp; where
*$g_{1}(t)$ die Spektralanteile im Intervall $\pm 3 \, \rm kHz$ beinhaltet und
+
*$g_{1}(t)$&nbsp; contains the spectral components in the interval $\pm 3 \, \rm kHz$&nbsp; and
*$g_{2}(t)$ diejenigen zwischen $13 \, \rm kHz$ und $15 \, \rm kHz$ (und zwischen $-13 \, \rm kHz$ und $-15 \, \rm kHz$).  
+
*$g_{2}(t)$&nbsp; those between $13 \, \rm kHz$ and $15 \, \rm kHz$&nbsp; (and between&nbsp; $-13 \, \rm kHz$&nbsp; and&nbsp; $-15 \, \rm kHz$).  
  
  
Mit der angegebenen Fourierkorrespondenz lauten die beiden Anteile:
+
With the Fourier correspondence given,&nbsp; the two components are:
 
:$$g_1(t)  \ = \ A \cdot 6\,{\rm kHz}  \cdot {\rm si}(\pi \cdot 6\,{\rm kHz} \cdot t)
 
:$$g_1(t)  \ = \ A \cdot 6\,{\rm kHz}  \cdot {\rm si}(\pi \cdot 6\,{\rm kHz} \cdot t)
 
   \hspace{0.05cm},$$
 
   \hspace{0.05cm},$$
Line 92: Line 93:
 
   \cdot 2 \cdot {\rm cos}(2 \pi \cdot 14\,{\rm kHz} \cdot t)
 
   \cdot 2 \cdot {\rm cos}(2 \pi \cdot 14\,{\rm kHz} \cdot t)
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Die zweite Gleichung folgt aus der Beziehung:
+
The second equation follows from the relation:
 
:$$G_2(f)  = \left[ \delta(f + 14\,{\rm kHz}) + \delta(f - 14\,{\rm kHz})\right] \star  \left\{ \begin{array}{c} A  \\ 0 \\\end{array} \right.\quad
 
:$$G_2(f)  = \left[ \delta(f + 14\,{\rm kHz}) + \delta(f - 14\,{\rm kHz})\right] \star  \left\{ \begin{array}{c} A  \\ 0 \\\end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\hspace{0.15cm}|f| < 1\,{\rm kHz} \hspace{0.05cm},
+
\begin{array}{*{1}c} {\rm{for}}\hspace{0.15cm}|f| < 1\,{\rm kHz} \hspace{0.05cm},
\\  {\rm{f\ddot{u}r}}\hspace{0.15cm}|f| > 1\,{\rm kHz}  \hspace{0.05cm}. \\
+
\\  {\rm{for}}\hspace{0.15cm}|f| > 1\,{\rm kHz}  \hspace{0.05cm}. \\
 
\end{array}$$
 
\end{array}$$
Die untere Grafik zeigt den numerisch ermittelten Zeitverlauf $g(t)$. Für den Zeitpunkt $t = T = 0.1\, \rm ms$ (gelbes Quadrat) erhält man:
+
The bottom diagram shows the numerically determined time history&nbsp; $g(t)$.&nbsp; For the time&nbsp; $t = T = 0.1\, \rm ms$&nbsp; (yellow square)&nbsp; we get:
:$$g_2(t = T )  =  2A \cdot 2\,{\rm kHz}  \cdot {\rm si}(0.2 \cdot \pi
+
:$$g_2(t = T )  =  2A \cdot 2\,{\rm kHz}  \cdot {\rm si}(0.2 \cdot \pi)\cdot \cos (2.8 \cdot \pi)   
  )\cdot \cos (2.8 \cdot \pi)   
 
 
       =  \frac{ A \cdot 4\,{\rm kHz}}{0.2 \cdot \pi}\cdot {\rm sin}(0.2 \cdot \pi
 
       =  \frac{ A \cdot 4\,{\rm kHz}}{0.2 \cdot \pi}\cdot {\rm sin}(0.2 \cdot \pi
 
   )\cdot\cos (0.8 \cdot \pi) = \frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot [{\rm sin}(-0.6 \cdot
 
   )\cdot\cos (0.8 \cdot \pi) = \frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot [{\rm sin}(-0.6 \cdot
 
   \pi)+ {\rm sin}(\pi)] $$
 
   \pi)+ {\rm sin}(\pi)] $$
 +
[[File:EN_Dig_A_1_4.png|right|frame|Higher frequency Nyquist pulse]]
 
:$$\Rightarrow \hspace{0.3cm} g_2(t = T )  = -\frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot {\rm sin}(0.6 \cdot
 
:$$\Rightarrow \hspace{0.3cm} g_2(t = T )  = -\frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot {\rm sin}(0.6 \cdot
 
   \pi).$$
 
   \pi).$$
Für den ersten Anteil $g_1(t)$ gilt zum Zeitpunkt $t = T$:
+
 
:$$g_1(t = T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm si}(0.6 \cdot \pi
+
For the first component&nbsp; $g_1(t)$,&nbsp; at time&nbsp; $t = T$:
  )= \frac{ A \cdot 6\,{\rm kHz}}{0.6 \cdot \pi}\cdot {\rm sin}(0.6 \cdot \pi
+
:$$g_1(t = T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm sinc}(0.6  
   )= - g_2(t = T )$$
+
  )$$
 +
:$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = \frac{ A \cdot 6\,{\rm kHz}}{0.6 \cdot \pi}\cdot {\rm sin}(0.6 \cdot \pi
 +
   )$$
 +
:$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = - g_2(t = T )$$
 
:$$\Rightarrow \hspace{0.3cm} g(t = T ) = g_1(t = T ) + g_2(t = T )\hspace{0.1cm}\underline {= 0 } \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} g(t = T ) = g_1(t = T ) + g_2(t = T )\hspace{0.1cm}\underline {= 0 } \hspace{0.05cm}.$$
Dieses Ergebnis ist aufgrund der Nyquisteigenschaft nicht überraschend.
+
This result is not surprising because of the Nyquist property.
[[File:P_ID1281__Dig_A_1_4c.png|center|frame|Höherfrequenter Nyquistimpuls]]
+
<br clear=all>
 
+
'''(4)'''&nbsp; For $t = 2.5 T$ (green square), the following partial results are obtained:
 
 
'''(4)'''&nbsp; Für $t = 2.5 T$ (grünes Quadrat) erhält man folgende Teilergebnisse:
 
 
:$$g_1(t = 2.5 T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm si}(1.5 \cdot \pi
 
:$$g_1(t = 2.5 T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm si}(1.5 \cdot \pi
 
   )= \frac{ A \cdot 6\,{\rm kHz}}{1.5 \cdot \pi}\cdot {\rm sin}(1.5 \cdot \pi
 
   )= \frac{ A \cdot 6\,{\rm kHz}}{1.5 \cdot \pi}\cdot {\rm sin}(1.5 \cdot \pi
Line 121: Line 123:
 
   )\cdot \cos (7 \cdot \pi)=- \frac{ A \cdot 8\,{\rm kHz}}{ \pi} $$
 
   )\cdot \cos (7 \cdot \pi)=- \frac{ A \cdot 8\,{\rm kHz}}{ \pi} $$
 
:$$\Rightarrow \hspace{0.3cm} g(t = 2.5  T )  = g_1(t = 2.5  T )  +g_2(t = 2.5  T ) =  - \frac{ A \cdot 12\,{\rm kHz}}{ \pi} \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} g(t = 2.5  T )  = g_1(t = 2.5  T )  +g_2(t = 2.5  T ) =  - \frac{ A \cdot 12\,{\rm kHz}}{ \pi} \hspace{0.05cm}.$$
Berücksichtigt man $g(t = 0) = A \cdot 10 \ \rm kHz$, so ergibt sich:
+
Considering&nbsp; $g(t = 0) = A \cdot 10 \ \rm kHz$,&nbsp; we get:
 
:$$\frac{g(t = 2.5  T )}{g(t = 0)} =  -\frac{ 1.2}{ \pi} \hspace{0.1cm}\underline {= -0.382 } \hspace{0.05cm}.$$
 
:$$\frac{g(t = 2.5  T )}{g(t = 0)} =  -\frac{ 1.2}{ \pi} \hspace{0.1cm}\underline {= -0.382 } \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Das zweite Nyquistkriterium besagt, dass der Nyquistimpuls $g(t)$ Nulldurchgänge bei $\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$ besitzt.
+
'''(5)'''&nbsp; The second Nyquist criterion states that the Nyquist pulse&nbsp; $g(t)$&nbsp; has zero crossings at $\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$  
*Nach dem Ergebnis aus '''(4)''' ist diese Bedingung hier nicht erfüllt.  
+
*According to the result from&nbsp; '''(4)'''&nbsp; this condition is not fulfilled here.&nbsp; Therefore <u>solution 2</u> is correct.
*Richtig ist demzufolge der <u>Lösungsvorschlag 2</u>.
 
  
  
Line 134: Line 135:
  
  
[[Category:Digital Signal Transmission: Exercises|^1.3 Eigenschaften von Nyquistsystemen^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.3 Nyquist System Properties^]]

Latest revision as of 09:16, 20 May 2022


Rectangular Nyquist spectrum

Given by the sketch is the spectrum  $G(f)$  of the basic detection pulse,  where the parameter  $A$  is still to be determined.  Among other things it is to be checked whether this basic detection pulse fulfills one of the two Nyquist criteria.  These are:

  • The  first Nyquist criterion  is fulfilled if for the spectral function holds:
$$\sum_{k = -\infty}^{+\infty} G(f - {k}/{T} ) = {\rm const.}$$
In this case,  the pulse  $g(t)$  has zero crossings at  $t = ν \cdot T$  for all integer values of  $ν$  except  $ν = 0$.  For the entire exercise,  $T = 0.1 \, \rm ms$  is assumed.
  • If the  second Nyquist criterion  is satisfied,  $g(t)$  has zero crossings at  $\pm 1.5 T$,  $\pm 2.5 T$, etc.



Notes:

  • The two equations are assumed to be known:
$$X(f) = \left\{ \begin{array}{c} A \\ 0 \\\end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\hspace{0.15cm}|f| < f_0 \hspace{0.05cm}, \\ {\rm{for}}\hspace{0.15cm}|f| > f_0 \hspace{0.08cm} \\ \end{array} \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} x(t) =2 \cdot A \cdot f_0 \cdot {\rm si}(2 \pi f_0 T) \hspace{0.05cm},\hspace{0.4cm} {\rm si} (x) = \sin(x)/x\hspace{0.05cm},$$
$$\sin(\alpha) \cdot \cos (\beta) = \frac{1}{2} \cdot \big[ \sin(\alpha - \beta) + \sin(\alpha + \beta)\big] \hspace{0.05cm}.$$


Questions

1

Does the given pulse  $g(t)$  satisfy the first Nyquist criterion?

The first Nyquist criterion is fulfilled.
The first Nyquist criterion is not fulfilled.

2

Determine the parameter  $A$  such that  $g(t = 0) = 2\, \rm V$  holds.

$A \ = \ $

$ \ \rm mV/Hz$

3

Calculate  $g(t)$  from  $G(f)$  by applying the inverse Fourier transform.  What  (normalized)  function value is obtained at  $t = T$?

$ g(t = T)/g(t = 0) \ = \ $

4

Which  (normalized)  value results for  $t = 2.5T$?

$g(t = 2.5 T)/g(t = 0)\ = \ $

5

Does the pulse  $g(t)$  satisfy the second Nyquist criterion?

The second Nyquist criterion is fulfilled.
The second Nyquist criterion is not fulfilled.


Solution

(1)  The following diagram shows the spectrum  (the index  "Per"  here stands for  "Periodic Continuation"):

Illustration of the first Nyquist criterion
$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} G(f - \frac{k}{T} ) \hspace{0.05cm}.$$
  • The indexing variable  $k = 0$  indicates the original spectral function  $G(f)$.  This is filled in gray.
  • The spectrum shifted to the right by the value  $1/T = 10\, \rm kHz$  belongs to  $k = 1$  and is marked in green,  while  $k = -1$  leads to the function highlighted in yellow.
  • The red and blue areas mark the contributions of the indexing variables  $k = 2$  and  $k = - 2$.


It can be seen that  $G_{\rm Per}(f)$  is constant.  From this it follows that the first Nyquist criterion is fulfilled   ⇒   solution 1  is correct.


(2)  Due to the Fourier integrals the following relation holds:

$$g(t=0) = \int_{-\infty}^{\infty}G(f) \,{\rm d} f = A \cdot ( 2\,{\rm kHz}+6\,{\rm kHz}+2\,{\rm kHz})= A \cdot 10\,{\rm kHz}$$
$$\Rightarrow \hspace{0.3cm}A = \frac{g(t=0)}{10\,{\rm kHz}} = \frac{2\,{\rm V}}{10\,{\rm kHz}} \hspace{0.1cm}\underline {= 0.2 \, {\rm mV/Hz}} \hspace{0.05cm}.$$


(3)  Let  $g(t) = g_{1}(t) +g_{2}(t)$,  where

  • $g_{1}(t)$  contains the spectral components in the interval $\pm 3 \, \rm kHz$  and
  • $g_{2}(t)$  those between $13 \, \rm kHz$ and $15 \, \rm kHz$  (and between  $-13 \, \rm kHz$  and  $-15 \, \rm kHz$).


With the Fourier correspondence given,  the two components are:

$$g_1(t) \ = \ A \cdot 6\,{\rm kHz} \cdot {\rm si}(\pi \cdot 6\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
$$g_2(t) \ = \ A \cdot 2\,{\rm kHz} \cdot{\rm si}(\pi \cdot 2\,{\rm kHz} \cdot t) \cdot 2 \cdot {\rm cos}(2 \pi \cdot 14\,{\rm kHz} \cdot t) \hspace{0.05cm}.$$

The second equation follows from the relation:

$$G_2(f) = \left[ \delta(f + 14\,{\rm kHz}) + \delta(f - 14\,{\rm kHz})\right] \star \left\{ \begin{array}{c} A \\ 0 \\\end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\hspace{0.15cm}|f| < 1\,{\rm kHz} \hspace{0.05cm}, \\ {\rm{for}}\hspace{0.15cm}|f| > 1\,{\rm kHz} \hspace{0.05cm}. \\ \end{array}$$

The bottom diagram shows the numerically determined time history  $g(t)$.  For the time  $t = T = 0.1\, \rm ms$  (yellow square)  we get:

$$g_2(t = T ) = 2A \cdot 2\,{\rm kHz} \cdot {\rm si}(0.2 \cdot \pi)\cdot \cos (2.8 \cdot \pi) = \frac{ A \cdot 4\,{\rm kHz}}{0.2 \cdot \pi}\cdot {\rm sin}(0.2 \cdot \pi )\cdot\cos (0.8 \cdot \pi) = \frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot [{\rm sin}(-0.6 \cdot \pi)+ {\rm sin}(\pi)] $$
Higher frequency Nyquist pulse
$$\Rightarrow \hspace{0.3cm} g_2(t = T ) = -\frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot {\rm sin}(0.6 \cdot \pi).$$

For the first component  $g_1(t)$,  at time  $t = T$:

$$g_1(t = T ) = A \cdot 6\,{\rm kHz} \cdot {\rm sinc}(0.6 )$$
$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = \frac{ A \cdot 6\,{\rm kHz}}{0.6 \cdot \pi}\cdot {\rm sin}(0.6 \cdot \pi )$$
$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = - g_2(t = T )$$
$$\Rightarrow \hspace{0.3cm} g(t = T ) = g_1(t = T ) + g_2(t = T )\hspace{0.1cm}\underline {= 0 } \hspace{0.05cm}.$$

This result is not surprising because of the Nyquist property.
(4)  For $t = 2.5 T$ (green square), the following partial results are obtained:

$$g_1(t = 2.5 T ) = A \cdot 6\,{\rm kHz} \cdot {\rm si}(1.5 \cdot \pi )= \frac{ A \cdot 6\,{\rm kHz}}{1.5 \cdot \pi}\cdot {\rm sin}(1.5 \cdot \pi )= - \frac{ A \cdot 4\,{\rm kHz}}{ \pi}\hspace{0.05cm},$$
$$g_2(t = 2.5 T ) = 2A \cdot 2\,{\rm kHz} \cdot {\rm si}(0.5 \cdot \pi )\cdot \cos (7 \cdot \pi)=- \frac{ A \cdot 8\,{\rm kHz}}{ \pi} $$
$$\Rightarrow \hspace{0.3cm} g(t = 2.5 T ) = g_1(t = 2.5 T ) +g_2(t = 2.5 T ) = - \frac{ A \cdot 12\,{\rm kHz}}{ \pi} \hspace{0.05cm}.$$

Considering  $g(t = 0) = A \cdot 10 \ \rm kHz$,  we get:

$$\frac{g(t = 2.5 T )}{g(t = 0)} = -\frac{ 1.2}{ \pi} \hspace{0.1cm}\underline {= -0.382 } \hspace{0.05cm}.$$


(5)  The second Nyquist criterion states that the Nyquist pulse  $g(t)$  has zero crossings at $\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$

  • According to the result from  (4)  this condition is not fulfilled here.  Therefore solution 2 is correct.