Difference between revisions of "Aufgaben:Exercise 1.5: SPC (5, 4) and BEC Model"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Kanalcodierung" to "Category:Channel Coding: Exercises")
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Beispiele binärer Blockcodes
+
{{quiz-Header|Buchseite=Channel_Coding/Examples_of_Binary_Block_Codes
  
 
}}
 
}}
  
[[File:P_ID2385__KC_A_1_5_neu.png|right|frame|Codeworte des  $\rm SPC \ (5, 4)$]]
+
[[File:P_ID2385__KC_A_1_5_neu.png|right|frame|Code words of the  $\rm SPC \ (5, 4)$]]
  
Für diese Aufgabe wird vorausgesetzt:
+
For this exercise it is required:
  
*Der  [[Channel_Coding/Beispiele_binärer_Blockcodes#Single_Parity.E2.80.93check_Codes|Single Parity–check Code]] mit den Parametern  $k = 4$  und  $n = 5$    ⇒   $\rm SPC \ (5, 4)$  fügt zu den Informationsbits  $u_{1}$, ... ,  $u_{4}$  ein Prüfbit  $p$  hinzu, so dass in jedem Codewort  $\underline{x}$  eine gerade Anzahl von Einsen vorkommt:
+
*The  [[Channel_Coding/Examples_of_Binary_Block_Codes#Single_Parity_Check_Codes|single parity-check code]] with parameters  $k = 4$  and  $n = 5$    ⇒   $\rm SPC \ (5, 4)$  adds to the information bits  $u_{1}$, ... ,  $u_{4}$  a check bit  $p$  so that an even number of ones occurs in each code word  $\underline{x}$ :
 
:$$x_1  \oplus  x_2  \oplus x_3 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm},$$
 
:$$x_1  \oplus  x_2  \oplus x_3 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm},$$
 
:$$ u_1  \oplus  u_2  \oplus u_3 \oplus u_4 \oplus p = 0 \hspace{0.05cm}.$$
 
:$$ u_1  \oplus  u_2  \oplus u_3 \oplus u_4 \oplus p = 0 \hspace{0.05cm}.$$
  
*Der  [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  (BEC) – mit binären Eingangswerten  $x_{i} \in \{0, \ 1\}$  und ternärem Ausgang  $y_{i} \in \{0, 1, \rm E\}$  führt mit Wahrscheinlichkeit  $\lambda = 0.1$  zu einer Auslöschung (englisch:   ''Erasure''), abgekürzt mit  $\rm E$.  
+
*The  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  $\rm (BEC)$ - with binary input values  $x_{i} \in \{0, \ 1\}$  and ternary output  $y_{i} \in \{0,\ 1,\ \rm E\}$  leads with probability  $\lambda = 0.1$  to an erasure  $\rm E$.
*Weiterhin gilt  ${\rm Pr}(y_{i} = x_{i}) = 1 - \lambda = 0.9$. Ein echter Übertragungsfehler wird ausgeschlossen:
+
 +
*Furthermore,  ${\rm Pr}(y_{i} = x_{i}) = 1 - \lambda = 0.9$  holds.  A real transmission error is excluded:
 
:$$ {\rm Pr} \big[(x_i = 0)\cap (y_i = 1)\big] = {\rm Pr} \big[(x_i = 1)\cap (y_i = 0)\big] = 0\hspace{0.05cm}.$$
 
:$$ {\rm Pr} \big[(x_i = 0)\cap (y_i = 1)\big] = {\rm Pr} \big[(x_i = 1)\cap (y_i = 0)\big] = 0\hspace{0.05cm}.$$
  
Der Zusammenhang zwischen dem Informationswort  $\underline{u}$  und dem Codewort  $\underline{x}$  ist durch die Tabelle gegeben. Aus dem Empfangswort  $\underline{y}$  wird durch Maximum–Likelihood–Entscheidung der Vektor  $\underline{v}$  der Informationsbits an der Sinke gebildet, der möglichst mit dem Informationswort  $\underline{u}$  übereinstimmen sollte.  
+
The relationship between the information word  $\underline{u}$  and the code word  $\underline{x}$  is given by the table.  From the receive word  $\underline{y}$  the vector  $\underline{v}$  of information bits at the sink is formed by maximum likelihood decision,  which should match the information word  $\underline{u}$  as much as possible.  
  
Es gelte die folgende Nomenklatur:
+
The following nomenclature applies:
:$$\underline{u} \ \in \  \{\underline{u}_0, \underline{u}_1,\hspace{0.15cm} \text{...} \hspace{0.2cm}, \underline{u}_{15}\} \hspace{0.05cm},$$
+
:$$\underline{u} \ \in \  \{\underline{u}_0,\ \underline{u}_1,\hspace{0.15cm} \text{...} \hspace{0.2cm},\ \underline{u}_{15}\} \hspace{0.05cm},$$
:$$ \underline{v} \ \in \  \{\underline{v}_0, \underline{v}_1, \hspace{0.15cm}\text{...} \hspace{0.2cm}, \underline{v}_{15}, \underline{\rm E}\} \hspace{0.05cm}.$$
+
:$$ \underline{v} \ \in \  \{\underline{v}_0,\ \underline{v}_1, \hspace{0.15cm}\text{...} \hspace{0.2cm},\ \underline{v}_{15},\ \underline{\rm E}\} \hspace{0.05cm}.$$
  
Das Ergebnis  $\underline{v} =\underline{\rm E} = {\rm (E, E, E, E)}$  kennzeichnet dabei, dass aufgrund zu vieler Auslöschungen eine Decodierung des Codewortes nicht möglich ist.
+
The result  $\underline{v} =\underline{\rm E} = {\rm (E,\ E,\ E,\ E)}$  indicates that decoding of the code word is not possible due to too many erasures.
  
  
Line 28: Line 29:
  
  
''Hinweise:''
+
Hints:
*Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Beispiele_binärer_Blockcodes|Beispiele binärer Blockcodes]].  
+
*This exercise belongs to the chapter  [[Channel_Coding/Examples_of_Binary_Block_Codes|"Examples of binary block codes"]].
*Bezug genommen wird auch  auf das Kapitel  [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen|Kanalmodelle und Entscheiderstrukturen]].  
+
*Die Prüfbits von  $u_{0}$,  $u_{4}$  und  $u_{13}$  sollen in der Teilaufgabe '''(1)''' ermittelt werden.
+
*Reference is also made to the chapter  [[Channel_Coding/Channel_Models_and_Decision_Structures|"Channel Models and Decision Structures"]].
 +
 +
*The check bits of  $u_{0}$,  $u_{4}$  and  $u_{13}$  are to be determined in the subtask  '''(1)''''.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
 
+
{What is the check bit&nbsp; $p$&nbsp; for each of the following information words&nbsp; $\underline{u}$&nbsp; ?
{Wie lautet für die folgenden Informationsworte&nbsp; $\underline{u}$&nbsp; jeweils das Prüfbit&nbsp; $p$?
 
 
|type="{}"}
 
|type="{}"}
 
$\underline{u} = \underline{u_{0}}\text{:}\hspace{0.4cm}p \ = \ $ { 0. }
 
$\underline{u} = \underline{u_{0}}\text{:}\hspace{0.4cm}p \ = \ $ { 0. }
Line 46: Line 48:
 
$\underline{u} = \underline{u_{13}}\text{:}\hspace{0.25cm}p \ = \ $ { 1 }
 
$\underline{u} = \underline{u_{13}}\text{:}\hspace{0.25cm}p \ = \ $ { 1 }
  
{Es sei&nbsp; $ \underline{y} = (0, 0, 0, 0, {\rm E})$. Welches Informationswort wurde gesendet?
+
{ Let&nbsp; $ \underline{y} = (0,\ 0,\ 0,\ 0,\ {\rm E})$.&nbsp; What information word was sent?
 
|type="()"}
 
|type="()"}
 
+ $ \underline{u}_{0}$,
 
+ $ \underline{u}_{0}$,
Line 53: Line 55:
  
  
{Es sei&nbsp; $ \underline{y} = (0, {\rm E}, 0, 0, 1)$. Welches Informationswort wurde gesendet?
+
{Let&nbsp; $ \underline{y} = (0,\ {\rm E},\ 0,\ 0,\ 1)$.&nbsp; What information word was sent?
 
|type="()"}
 
|type="()"}
 
- $\underline{u}_{0}$,
 
- $\underline{u}_{0}$,
Line 59: Line 61:
 
- $\underline{u}_{13}$.
 
- $\underline{u}_{13}$.
  
{Mit welcher Wahrscheinlichkeit stimmt&nbsp; $\underline{y}$&nbsp; mit dem Codewort&nbsp; $\underline{x}$&nbsp; überein?
+
{With what probability does&nbsp; $\underline{y}$&nbsp; match the code word&nbsp; $\underline{x}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$\ {\rm Pr} (\underline{y} = \underline{x}) \ = \ ${ 59.1 3% } $\ \%$
 
$\ {\rm Pr} (\underline{y} = \underline{x}) \ = \ ${ 59.1 3% } $\ \%$
  
{Mit welcher Wahrscheinlichkeit stimmen die beiden Vekoren&nbsp; $\underline{u}$&nbsp; und&nbsp; $\underline{v}$&nbsp; überein?
+
{With what probability do the two vectors&nbsp; $\underline{u}$&nbsp; and&nbsp; $\underline{v}$&nbsp; match?
 
|type="{}"}
 
|type="{}"}
 
$\ {\rm Pr} (\underline{v} = \underline{u}) \ = \ $ { 91.9 3% } $\ \%$
 
$\ {\rm Pr} (\underline{v} = \underline{u}) \ = \ $ { 91.9 3% } $\ \%$
  
{Wie groß ist die Wahrscheinlichkeit für einen erkannten Fehler?
+
{What is the probability of a detected error?
 
|type="{}"}
 
|type="{}"}
 
$\ {\rm Pr} (\underline{\upsilon} = {\rm {\underline{ E}}}) \ = \ $ { 8.1 3% } $\ \%$
 
$\ {\rm Pr} (\underline{\upsilon} = {\rm {\underline{ E}}}) \ = \ $ { 8.1 3% } $\ \%$
Line 74: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Das Prüfbit $p$ wird beim ''Single Parity–check'' Code so bestimmt, dass die Summe aller Einsen im Codewort $\underline{x} = (u_{1}, u_{2}, ... , u_{4}, p)$ geradzahlig ist. <br>Beispielsweise erhält man:
+
'''(1)'''&nbsp; The check bit&nbsp; $p$&nbsp; is determined in the "single parity-check code"&nbsp; in such a way,&nbsp;  that the sum of all ones in the code word $\underline{x} = (u_{1},\ u_{2}, ... ,\ u_{4},\ p)$&nbsp; is even.&nbsp;  <br>For example, one gets:
 
:$$\underline{u}_0 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 0, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_0 = (0, 0, 0, 0, 0)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0} \hspace{0.05cm},$$
 
:$$\underline{u}_0 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 0, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_0 = (0, 0, 0, 0, 0)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0} \hspace{0.05cm},$$
 
:$$ \underline{u}_4 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 1, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_4 = (0, 1, 0, 0, 1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 1} \hspace{0.05cm},$$  
 
:$$ \underline{u}_4 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 1, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_4 = (0, 1, 0, 0, 1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 1} \hspace{0.05cm},$$  
Line 83: Line 85:
  
  
'''(2)'''&nbsp; Richtig ist die <u>Antwort 1</u>:
+
'''(2)'''&nbsp; Correct is&nbsp; <u>answer 1</u>:
*Aufgrund der Tatsache, dass die Anzahl der Einsen geradzahlig sein muss, ist das ausgelöschte Prüfbit $p = 0$. Gesendet wurde also $\underline{u}_{0}$.  
+
*Because of the fact that the number of ones must be even,&nbsp; the erased check bit&nbsp; $p = 0$.&nbsp; Thus,&nbsp; $\underline{u}_{0}$ was sent.  
  
  
  
'''(3)'''&nbsp; Richtig ist die <u>Antwort 2</u>:
+
'''(3)'''&nbsp; Correct is&nbsp; <u>answer 2</u>:
*Nach gleichen Überlegungen wie in der letzten Teilaufgabe kommt man für $\underline{y} = (0,
+
*According to the same considerations as in the last subtask,&nbsp; we arrive with&nbsp; $\underline{y} = (0,\
  {\rm E}, 0, 0, 1)$ zum Ergebnis
+
  {\rm E},\ 0,\ 0,\ 1)$&nbsp; to the result
 
:$$\underline{x} = \underline{x}_{4} = (0, 1, 0, 0, 1) ⇒ \underline{u}_{4} = (0, 1, 0, 0).$$
 
:$$\underline{x} = \underline{x}_{4} = (0, 1, 0, 0, 1) ⇒ \underline{u}_{4} = (0, 1, 0, 0).$$
  
  
'''(4)'''&nbsp; Das Ereignis $\underline{y} = \underline{x}$ tritt nur dann auf, wenn durch den BEC–Kanal keines der $n = 5$ Codebits ausgelöscht wird:
+
'''(4)'''&nbsp; The event&nbsp; $\underline{y} = \underline{x}$&nbsp; occurs only if none of the&nbsp; $n = 5$&nbsp; code bits is erased by the BEC channel:
 
:$${\rm Pr}(\underline{y} = \underline{x}) = (1 - \lambda)^5 = 0.9^5 \hspace{0.15cm} \underline{= 59.1\%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(\underline{y} = \underline{x}) = (1 - \lambda)^5 = 0.9^5 \hspace{0.15cm} \underline{= 59.1\%} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Das Ereignis $v = u$ tritt dann auf,  
+
'''(5)'''&nbsp; The event&nbsp; $v = u$&nbsp; then occurs,  
*wenn alle Codebits richtig übertragen werden &nbsp; &rArr; &nbsp; ${\rm Pr}(\underline{y} = \underline{x})$,  
+
*if all code bits are transmitted correctly &nbsp; &rArr; &nbsp; ${\rm Pr}(\underline{y} = \underline{x})$,  
*aber auch dann, wenn nur ein Codebit ausgelöscht wird. Entsprechend der Binominalverteilung gibt es hierfür 5 Möglichkeiten:
+
*but also when only one code bit is erased.&nbsp; According to the binomial distribution,&nbsp; there are five possibilities for this:
 
:$${\rm Pr}(\underline{v} = \underline{u}) \hspace{-0.1cm}\ = \ \hspace{-0.1cm} {\rm Pr}(\underline{y} = \underline{x}) + 5 \cdot (1 - \lambda)^4 \cdot \lambda =  0.591 + 5 \cdot 0.656^4 \cdot 0.1 \hspace{0.15cm} \underline{= 91.9 \%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(\underline{v} = \underline{u}) \hspace{-0.1cm}\ = \ \hspace{-0.1cm} {\rm Pr}(\underline{y} = \underline{x}) + 5 \cdot (1 - \lambda)^4 \cdot \lambda =  0.591 + 5 \cdot 0.656^4 \cdot 0.1 \hspace{0.15cm} \underline{= 91.9 \%} \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Aufgrund des BEC–Modells ist die Verfälschung eines Codewortes $\underline{x}$ per se ausgeschlossen, da keines der Bit von $0 → 1$ bzw. von $1 → 0$ verfälscht werden kann. Vielmehr gilt:
+
'''(6)'''&nbsp; Due to the BEC model,&nbsp; the falsification of a code word&nbsp; $\underline{x}$&nbsp; is per se impossible,&nbsp; since none of the bits can be falsified from&nbsp; $0 → 1$&nbsp; or from&nbsp; $1 → 0$.&nbsp; Rather:
 
:$${\rm Pr}(\underline{v} = \underline{u}) + {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 - {\rm Pr}(\underline{v} = \underline{u}) \hspace{0.15cm} \underline{= 8.1\%} \hspace{0.05cm}.$$
 
:$${\rm Pr}(\underline{v} = \underline{u}) + {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 - {\rm Pr}(\underline{v} = \underline{u}) \hspace{0.15cm} \underline{= 8.1\%} \hspace{0.05cm}.$$
  
Line 111: Line 113:
  
  
[[Category:Channel Coding: Exercises|^1.3 Beispiele binärer Blockcodes
+
[[Category:Channel Coding: Exercises|^1.3 Examples of Binary Block Codes^]]
^]]
 

Latest revision as of 17:26, 23 January 2023

Code words of the  $\rm SPC \ (5, 4)$

For this exercise it is required:

  • The  single parity-check code with parameters  $k = 4$  and  $n = 5$    ⇒   $\rm SPC \ (5, 4)$  adds to the information bits  $u_{1}$, ... ,  $u_{4}$  a check bit  $p$  so that an even number of ones occurs in each code word  $\underline{x}$ :
$$x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 = 0 \hspace{0.05cm},$$
$$ u_1 \oplus u_2 \oplus u_3 \oplus u_4 \oplus p = 0 \hspace{0.05cm}.$$
  • The  Binary Erasure Channel  $\rm (BEC)$ - with binary input values  $x_{i} \in \{0, \ 1\}$  and ternary output  $y_{i} \in \{0,\ 1,\ \rm E\}$  leads with probability  $\lambda = 0.1$  to an erasure  $\rm E$.
  • Furthermore,  ${\rm Pr}(y_{i} = x_{i}) = 1 - \lambda = 0.9$  holds.  A real transmission error is excluded:
$$ {\rm Pr} \big[(x_i = 0)\cap (y_i = 1)\big] = {\rm Pr} \big[(x_i = 1)\cap (y_i = 0)\big] = 0\hspace{0.05cm}.$$

The relationship between the information word  $\underline{u}$  and the code word  $\underline{x}$  is given by the table.  From the receive word  $\underline{y}$  the vector  $\underline{v}$  of information bits at the sink is formed by maximum likelihood decision,  which should match the information word  $\underline{u}$  as much as possible.

The following nomenclature applies:

$$\underline{u} \ \in \ \{\underline{u}_0,\ \underline{u}_1,\hspace{0.15cm} \text{...} \hspace{0.2cm},\ \underline{u}_{15}\} \hspace{0.05cm},$$
$$ \underline{v} \ \in \ \{\underline{v}_0,\ \underline{v}_1, \hspace{0.15cm}\text{...} \hspace{0.2cm},\ \underline{v}_{15},\ \underline{\rm E}\} \hspace{0.05cm}.$$

The result  $\underline{v} =\underline{\rm E} = {\rm (E,\ E,\ E,\ E)}$  indicates that decoding of the code word is not possible due to too many erasures.




Hints:

  • The check bits of  $u_{0}$,  $u_{4}$  and  $u_{13}$  are to be determined in the subtask  (1)'.



Questions

1

What is the check bit  $p$  for each of the following information words  $\underline{u}$  ?

$\underline{u} = \underline{u_{0}}\text{:}\hspace{0.4cm}p \ = \ $

$\underline{u} = \underline{u_{4}}\text{:}\hspace{0.4cm}p \ = \ $

$\underline{u} = \underline{u_{13}}\text{:}\hspace{0.25cm}p \ = \ $

2

Let  $ \underline{y} = (0,\ 0,\ 0,\ 0,\ {\rm E})$.  What information word was sent?

$ \underline{u}_{0}$,
$ \underline{u}_{4}$,
$ \underline{u}_{13}$.

3

Let  $ \underline{y} = (0,\ {\rm E},\ 0,\ 0,\ 1)$.  What information word was sent?

$\underline{u}_{0}$,
$\underline{u}_{4}$,
$\underline{u}_{13}$.

4

With what probability does  $\underline{y}$  match the code word  $\underline{x}$ ?

$\ {\rm Pr} (\underline{y} = \underline{x}) \ = \ $

$\ \%$

5

With what probability do the two vectors  $\underline{u}$  and  $\underline{v}$  match?

$\ {\rm Pr} (\underline{v} = \underline{u}) \ = \ $

$\ \%$

6

What is the probability of a detected error?

$\ {\rm Pr} (\underline{\upsilon} = {\rm {\underline{ E}}}) \ = \ $

$\ \%$


Solution

(1)  The check bit  $p$  is determined in the "single parity-check code"  in such a way,  that the sum of all ones in the code word $\underline{x} = (u_{1},\ u_{2}, ... ,\ u_{4},\ p)$  is even. 
For example, one gets:

$$\underline{u}_0 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 0, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_0 = (0, 0, 0, 0, 0)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0} \hspace{0.05cm},$$
$$ \underline{u}_4 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (0, 1, 0, 0) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}_4 = (0, 1, 0, 0, 1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 1} \hspace{0.05cm},$$
$$\underline{u}_{13} \hspace{-0.1cm}\ = \ \hspace{-0.1cm} (1, 1, 0, 1) \hspace{0.15cm} \Rightarrow \hspace{0.15cm} \underline{x}_{13} = (1, 1, 0, 1, 1)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 1} \hspace{0.05cm}.$$


(2)  Correct is  answer 1:

  • Because of the fact that the number of ones must be even,  the erased check bit  $p = 0$.  Thus,  $\underline{u}_{0}$ was sent.


(3)  Correct is  answer 2:

  • According to the same considerations as in the last subtask,  we arrive with  $\underline{y} = (0,\ {\rm E},\ 0,\ 0,\ 1)$  to the result
$$\underline{x} = \underline{x}_{4} = (0, 1, 0, 0, 1) ⇒ \underline{u}_{4} = (0, 1, 0, 0).$$


(4)  The event  $\underline{y} = \underline{x}$  occurs only if none of the  $n = 5$  code bits is erased by the BEC channel:

$${\rm Pr}(\underline{y} = \underline{x}) = (1 - \lambda)^5 = 0.9^5 \hspace{0.15cm} \underline{= 59.1\%} \hspace{0.05cm}.$$


(5)  The event  $v = u$  then occurs,

  • if all code bits are transmitted correctly   ⇒   ${\rm Pr}(\underline{y} = \underline{x})$,
  • but also when only one code bit is erased.  According to the binomial distribution,  there are five possibilities for this:
$${\rm Pr}(\underline{v} = \underline{u}) \hspace{-0.1cm}\ = \ \hspace{-0.1cm} {\rm Pr}(\underline{y} = \underline{x}) + 5 \cdot (1 - \lambda)^4 \cdot \lambda = 0.591 + 5 \cdot 0.656^4 \cdot 0.1 \hspace{0.15cm} \underline{= 91.9 \%} \hspace{0.05cm}.$$


(6)  Due to the BEC model,  the falsification of a code word  $\underline{x}$  is per se impossible,  since none of the bits can be falsified from  $0 → 1$  or from  $1 → 0$.  Rather:

$${\rm Pr}(\underline{v} = \underline{u}) + {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(\underline{v} = {\rm\underline{ E}}) = 1 - {\rm Pr}(\underline{v} = \underline{u}) \hspace{0.15cm} \underline{= 8.1\%} \hspace{0.05cm}.$$