Difference between revisions of "Aufgaben:Exercise 1.6: Autocorrelation Function and PDS with Rice Fading"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}} Datei:P_ID2132__Mob_A_1_6.png|right|frame|Rice-WDF für…“)
 
 
(34 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component}}
  
[[File:P_ID2132__Mob_A_1_6.png|right|frame|Rice-WDF für verschiedene Werte von  $z_0^2$]]
+
[[File:P_ID2132__Mob_A_1_6.png|right|frame|Rice PDF for different values of  $z_0^2$]]
Man spricht dann von&nbsp; <i>Rice&ndash;Fading</i>, wenn der den Mobilfunkkanal beschreibende komplexe Faktor&nbsp; $z(t)$&nbsp; neben der rein stochastischen Komponente&nbsp; $x(t) +{\rm j} \cdot y(t)$&nbsp; zusätzlich einen deterministischen Anteil der Form&nbsp; $x_0 + {\rm j} \cdot y_0$&nbsp; aufweist.
+
One speaks of&nbsp; "Rice fading"&nbsp; if the complex factor&nbsp; $z(t)$&nbsp; describing the mobile radio channel contains  besides the purely stochastic component&nbsp; $x(t) +{\rm j} \cdot y(t)$&nbsp; a deterministic part of the form&nbsp; $x_0 + {\rm j} \cdot y_0$.
  
Die Gleichungen des Rice&ndash;Fadings lassen sich in aller Kürze wie folgt zusammenfassen:
+
The equations of Rice fading can be summarized briefly as follows:
 
:$$r(t) = z(t) \cdot s(t) ,$$
 
:$$r(t) = z(t) \cdot s(t) ,$$
 
:$$z(t) = x(t) + {\rm j} \cdot y(t) ,$$
 
:$$z(t) = x(t) + {\rm j} \cdot y(t) ,$$
Line 11: Line 11:
 
:$$y(t) = v(t) + y_0 .$$
 
:$$y(t) = v(t) + y_0 .$$
  
Dabei gilt:
+
The following applies:
* Der direkte Pfad wird durch die komplexe Konstante&nbsp; $z_0 = x_0 + {\rm j} \cdot y_0$&nbsp; beschrieben. Der Betrag dieser zeitinvarianten Komponente ist
+
* The direct path is defined by the complex constant&nbsp; $z_0 = x_0 + {\rm j} \cdot y_0$.&nbsp; The magnitude of this time-invariant component is
 
:$$|z_0| = \sqrt{x_0^2 + y_0^2}\hspace{0.05cm}.$$
 
:$$|z_0| = \sqrt{x_0^2 + y_0^2}\hspace{0.05cm}.$$
* $u(t)$&nbsp; und&nbsp; $v(t)$&nbsp; sind Musterfunktionen mittelwertfreier Gaußscher Zufallsprozesse, beide mit Varianz&nbsp; $\sigma^2$&nbsp; und miteinander nicht korreliert. Sie berücksichtigen Streu&ndash;, Brechungs&ndash; und Beugungseffekte auf einer Vielzahl von indirekten Pfaden.
+
* $u(t)$&nbsp; and&nbsp; $v(t)$&nbsp; are zero-mean Gaussian random processes, both with variance&nbsp; $\sigma^2$&nbsp; and uncorrelated with each other.&nbsp; They model scattering, refraction and diffraction effects on a variety of indirect paths.
* Der Betrag&nbsp; $a(t) = |z(t)|$&nbsp; besitzt eine Rice&ndash;WDF, eine Eigenschaft, die für die Namensgebung dieses speziellen Mobilfunkkanals verantwortlich ist. Die WDF&ndash;Gleichung lautet für&nbsp; $a &#8805; 0$:
+
* The magnitude&nbsp; $a(t) = |z(t)|$&nbsp; has a Rice probability density function&nbsp; $\rm (PDF)$, which gives this channel model its name.&nbsp; For &nbsp; $a &#8805; 0$, the PDF is
 
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.2cm}{\rm I }_0 (u)  =  
 
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.2cm}{\rm I }_0 (u)  =  
 
  \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die Grafik zeigt die Rice&ndash;WDF für&nbsp; $|z_0|^2 = 0,\ 2, \ 4, \ 10$&nbsp; und &nbsp;$20$. Für alle Kurven gilt&nbsp; $\sigma = 1$ &nbsp; &#8658; &nbsp; $\sigma^2 = 1$.
+
The graph shows the Rice PDF for&nbsp; $|z_0|^2 = 0,\ 2, \ 4, \ 10$&nbsp; and &nbsp;$20$.&nbsp; For all curves, we have &nbsp; $\sigma = 1$ &nbsp; &#8658; &nbsp; $\sigma^2 = 1$.
  
  
In dieser Aufgabe betrachten wir aber nicht die WDF des Betrags, sondern die AKF des komplexen Faktors&nbsp; $z(t)$,
+
In this task, however, we will not consider the PDF of the magnitude, but the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of the complex factor&nbsp; $z(t)$,
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\big [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\big ]
+
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\big [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\big ]
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
sowie das dazugehörige Leistungsdichtespektrum
+
and the corresponding power-spectral density&nbsp; $\rm (PSD)$
 
:$${\it \Phi}_z (f_{\rm D})  
 
:$${\it \Phi}_z (f_{\rm D})  
 
  \hspace{0.3cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.3cm} \varphi_z ({\rm \Delta}t)   
 
  \hspace{0.3cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.3cm} \varphi_z ({\rm \Delta}t)   
Line 37: Line 37:
  
  
''Hinweise:''  
+
''Notes:''  
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente|Nichtfrequenzselektives Fading mit Direktkomponente]].  
+
* This task belongs to chapter&nbsp; [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component|Non-frequency selective fading with direct component]].  
* Bezug genommen wird auch auf die Kapitel&nbsp; [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion (AKF)]]&nbsp; und&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektrum (LDS)]]&nbsp; im Buch &bdquo;Stochastische Signaltheorie&rdquo;.
+
* Reference is also made to the chapters&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)|Auto-Correlation function (ACF)]]&nbsp; and&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]]&nbsp; in the book "Stochastic Signal Theory".
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher&nbsp; $|z_0|^2$&ndash;Wert beschreibt das Rayleigh&ndash;Fading?
+
{Which value of &nbsp; $|z_0|^2$&nbsp; corresponds to Rayleigh fading?
 
|type="{}"}
 
|type="{}"}
 
$|z_0|^2 \ = \ $ { 0. } $\ \rm $
 
$|z_0|^2 \ = \ $ { 0. } $\ \rm $
  
{Es gelte&nbsp; $|z_0|^2 \ne 0$. Welche der folgenden Größen hängen nur von&nbsp; $|z_0|^2 = x_0^2$ + $y_0^2$&nbsp; ab, nicht aber von dessen Komponenten&nbsp; $x_0^2$&nbsp; und&nbsp; $y_0^2$&nbsp; allein?  
+
{Let&nbsp; $|z_0|^2 \ne 0$.&nbsp; Which of the following functions depend only on&nbsp; $|z_0|^2 = x_0^2$ + $y_0^2$,&nbsp; but not on its components&nbsp; $x_0^2$&nbsp; and&nbsp; $y_0^2$&nbsp; alone?  
 
|type="[]"}
 
|type="[]"}
- WDF&nbsp; $f_x(x)$&nbsp; des Realteils,
+
- PDF&nbsp; $f_x(x)$&nbsp; of the real part,
- WDF&nbsp; $f_y(y)$&nbsp; des Imaginärteils,
+
- PDF&nbsp; $f_y(y)$&nbsp; of the imaginary part,
+ WDF&nbsp; $f_a(a)$&nbsp; des Betrags,
+
+ PDF&nbsp; $f_a(a)$&nbsp; of the magnitude,
- WDF&nbsp; $f_{\rm \phi}(\phi)$&nbsp; der Phase,
+
- PDF&nbsp; $f_{\rm \phi}(\phi)$&nbsp; of the phase,
+ AKF&nbsp; $\varphi_z(\Delta t)$&nbsp; der komplexen Größe&nbsp; $z(t)$,
+
+ ACF&nbsp; $\varphi_z(\Delta t)$&nbsp; the complex quantity&nbsp; $z(t)$,
+ LDS&nbsp; ${\it \Phi}_z(f_{\rm D})$&nbsp; der komplexen Größe&nbsp; $z(t)$.
+
+ PDS&nbsp; ${\it \Phi}_z(f_{\rm D})$&nbsp; the complex quantity&nbsp; $z(t)$.
  
{Berechnen Sie den quadratischen Mittelwert&nbsp; ${\rm E}\big[|z(t)|^2\big]$ für verschiedene Werte von&nbsp; $|z_0|^2$. Es gelte&nbsp; $\sigma^2 = 1$.
+
{Calculate the second order moment&nbsp; ${\rm E}\big[|z(t)|^2\big]$&nbsp; for different values of&nbsp; $|z_0|^2$.&nbsp; Assume &nbsp; $\sigma^2 = 1$.
 
|type="{}"}
 
|type="{}"}
$|z_0|^2 = 0\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 2 3% } $\ \rm $
+
$|z_0|^2 = 0\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 2 3% } $\ \ \rm $
$|z_0|^2 = 2\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 4 3% } $\ \rm $
+
$|z_0|^2 = 2\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 4 3% } $\ \ \rm $
$|z_0|^2 = 10\text{:} \hspace{0.3cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 12 3% } $\ \rm $
+
$|z_0|^2 = 10\text{:} \hspace{0.3cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 12 3% } $\ \ \rm $
  
{Wie unterscheiden sich die Autokorrelationsfunktionen (kurz: &nbsp; AKF) des schwarzen, des blauen und des grünen Kanals?
+
{How differ the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of the black, the blue and the green channel?
 
|type="[]"}
 
|type="[]"}
+ Die &bdquo;blaue&rdquo; AKF liegt um den Wert &nbsp;$4$&nbsp; über der &bdquo;schwarzen&rdquo;.
+
+ The "blue" ACF is above the "black" ACF by about &nbsp;$4$&nbsp; units.
- Die &bdquo;blaue&rdquo; AKF liegt um  den Wert  &nbsp;$2$&nbsp; unterhalb der &bdquo;schwarzen&rdquo;.
+
- The "blue" ACF is below the "black" ACF by about &nbsp;$2$&nbsp; units.
- Die &bdquo;grüne&rdquo; AKF ist um den Faktor &nbsp;$2.5$&nbsp; breiter als die &bdquo;blaue&rdquo;.
+
- The "green" ACF is wider than the "blue" by the factor &nbsp;$2.5$&nbsp;.
  
{Wie unterscheiden sich die Leistungsdichtespektren (kurz: &nbsp; LDS) von schwarzem, blauem und grünem Mobilfunkkanal?
+
{How differ the power-spectral density&nbsp; $\rm (PSD)$&nbsp; among the black, blue, and green mobile radio channels?
 
|type="[]"}
 
|type="[]"}
+ Das &bdquo;schwarze&rdquo; LDS ist rein kontinuierlich (kein Dirac).
+
+ The "black" PSD is purely continuous (no Dirac).
+ Das &bdquo;blaue&rdquo; und &bdquo;grüne&rdquo; LDS beinhalten jeweils einen Dirac.
+
+ The "blue" and "green" PSD contain one Dirac each.
+ Der &bdquo;grüne&rdquo; Dirac hat ein größeres Gewicht als der &bdquo;blaue&rdquo;.
+
+ The "green" Dirac has a greater weight than the "blue" one.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''' Das <i>Rayleigh&ndash;Fading</i> ergibt sich aus dem <i>Rice&ndash;Fading</i> mit $|z_0|^2 \ \underline {= \ 0}$.
+
'''(1)''' Rayleigh fading&nbsp; results from the Rice fading&nbsp; with&nbsp; $|z_0|^2 \ \underline {= \ 0}$.
  
  
'''(2)''' Richtig sind die <u>Lösungsvorschläge 3, 5 und 6</u>:
+
'''(2)''' <u>Options 3, 5 and 6</u> are correct:
  
Es ist offensichtlich, dass
+
It is obvious that
* $f_x(x)$ von $x_0$ abhängt,
+
* $f_x(x)$&nbsp; depends only on&nbsp; $x_0$,
* $f_y(y)$ von $y_0$ abhängt,
+
* $f_y(y)$&nbsp; depends only on&nbsp; $y_0$,
* $f_{\rm \phi}(\phi)$ vom Verhältnis $y_0/x_0$ abhängt.
+
* $f_{\rm \phi}(\phi)$ depends only on the ratio $y_0/x_0$.
  
  
Die angegebene Gleichung für die WDF $f_a(a)$ zeigt, dass der Betrag $a$ nur von $|z_0|$ abhängt.
+
The given equation for the PDF&nbsp; $f_a(a)$&nbsp; shows that the magnitude&nbsp; $a$&nbsp; depends only on&nbsp; $|z_0|$.
  
Für die AKF gilt mit $z(t) = x(t) + {\rm j} \cdot y(t)$:
+
For the ACF, using&nbsp; $z(t) = x(t) + {\rm j} \cdot y(t)$&nbsp; we have
 
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\right] =  {\rm E}\left [ \left ( x(t) + {\rm j} \cdot y(t) \right )\cdot (x(t + {\rm \Delta}t) - {\rm j} \cdot (y(t+ {\rm \Delta}t)\right ]
 
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\right] =  {\rm E}\left [ \left ( x(t) + {\rm j} \cdot y(t) \right )\cdot (x(t + {\rm \Delta}t) - {\rm j} \cdot (y(t+ {\rm \Delta}t)\right ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Aufgrund der statistischen Unabhängigkeit zwischen Real&ndash; und Imaginärteil kann man die Gleichung wie folgt vereinfachen:
+
Because of the statistical independence between real and imaginary parts, the equation can be simplified as follows:
 
:$$\varphi_z ({\rm \Delta}t) =  {\rm E}\left [ x(t) \cdot x(t + {\rm \Delta}t)\right ] +  
 
:$$\varphi_z ({\rm \Delta}t) =  {\rm E}\left [ x(t) \cdot x(t + {\rm \Delta}t)\right ] +  
 
  {\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] \hspace{0.05cm}.$$
 
  {\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] \hspace{0.05cm}.$$
  
Der erste Anteil ergibt mit $x(t) = u(t) + x_0$ und $t' = t + \Delta t$:  
+
With&nbsp; $x(t) = u(t) + x_0$&nbsp; and&nbsp; $t' = t + \Delta t$, the first part results in&nbsp; $x(t) = u(t) + x_0$:  
 
:$${\rm E}\left [ x(t) \cdot x(t')\right ] = {\rm E}\left [ u(t) \cdot u(t')\right ] + x_0 \cdot {\rm E}\left [ u(t) \right ]
 
:$${\rm E}\left [ x(t) \cdot x(t')\right ] = {\rm E}\left [ u(t) \cdot u(t')\right ] + x_0 \cdot {\rm E}\left [ u(t) \right ]
 
   + x_0 \cdot {\rm E}\left [ u(t') \right ] + x_0^2\hspace{0.05cm},$$
 
   + x_0 \cdot {\rm E}\left [ u(t') \right ] + x_0^2\hspace{0.05cm},$$
Line 108: Line 108:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Hierbei ist berücksichtigt, dass die Gaußsche Zufallsgröße $u(t)$ mittelwertfrei ist und die Varianz $\sigma^2$ besitzt.
+
This takes into account that the Gaussian random variable&nbsp; $u(t)$&nbsp; has zero mean and has the variance&nbsp; $\sigma^2$.
  
In gleicher Weise erhält man mit $y(t) = \upsilon (t) + y_0$:
+
In the same way with&nbsp; $y(t) = v(t) + y_0$&nbsp; is obtained:
 
:$${\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] = \ ... \ = \varphi_v ({\rm \Delta}t) + y_0^2 \hspace{0.3cm}  
 
:$${\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] = \ ... \ = \varphi_v ({\rm \Delta}t) + y_0^2 \hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} \varphi_z ({\rm \Delta}t) = \varphi_u ({\rm \Delta}t) + \varphi_v ({\rm \Delta}t)  + x_0^2 + y_0^2
 
\Rightarrow \hspace{0.3cm} \varphi_z ({\rm \Delta}t) = \varphi_u ({\rm \Delta}t) + \varphi_v ({\rm \Delta}t)  + x_0^2 + y_0^2
Line 116: Line 116:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Wenn aber die AKF $\varphi_z(\Delta t)$ nur von $|z_0^2|$ abhängt, dann gilt dies auch für die Fouriertransformierte &bdquo;LDS&rdquo;.  
+
But if the ACF&nbsp; $\varphi_z(\Delta t)$&nbsp; only depends on&nbsp; $|z_0^2|$, then this also applies to the Fourier transform &nbsp; &rArr; &nbsp; power-spectral density&nbsp; $\rm PDS$.  
  
  
'''(3)''' Der quadratische Mittelwert könnte zum Beispiel aus der Betrags&ndash;WDF berechnet werden:
+
'''(3)''' The second order moment&nbsp; ("power")&nbsp; can be calculated from the PDF of the magnitude:
 
:$${\rm E}\left [ |z(t)|^2 \right ] = {\rm E}\left [ a^2 \right ] = \int_{0}^{\infty}a^2 \cdot f_a(a)\hspace{0.15cm}{\rm d}a
 
:$${\rm E}\left [ |z(t)|^2 \right ] = {\rm E}\left [ a^2 \right ] = \int_{0}^{\infty}a^2 \cdot f_a(a)\hspace{0.15cm}{\rm d}a
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Gleichzeitig ist der quadratische Mittelwert &ndash; also die Leistung &ndash; auch durch die AKF bestimmt:
+
At the same time,&nbsp; the  power is also determined by the ACF:
:$${\rm E}\left [ |z(t)|^2 \right ] = \varphi_z ({\rm \Delta}t = 0) = 2 \cdot \varphi_u ({\rm \Delta}t = 0) + |z_0|^2 = 2 \cdot \sigma^2 + |z_0|^2
+
:$${\rm E}\left [ |z(t)|^2 \right ] = \varphi_z ({\rm \delta}t = 0) = 2 \cdot \varphi_u ({\rm \delta}t = 0) + |z_0|^2 = 2 \cdot \sigma^2 + |z_0|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Mit $\sigma = 1$ erhält man somit folgende numerische Ergebnisse:
+
With&nbsp; $\sigma = 1$&nbsp; you get the following numerical results:
:$$ \ \ |z_0|^2 = 0\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 0 \hspace{0.15cm} \underline{ = 2}  \hspace{0.05cm},$$
+
:$$ \ |z_0|^2 = 0\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 0 \hspace{0.15cm} \underline{ = 2}  \hspace{0.05cm},$$
:$$ \ \ |z_0|^2 = 2\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 2 \hspace{0.15cm} \underline{ = 4}  \hspace{0.05cm},$$
+
:$$ \ |z_0|^2 = 2\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 2 \hspace{0.15cm} \underline{ = 4}  \hspace{0.05cm},$$
 
:$$|z_0|^2 = 10\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 10 \hspace{0.15cm} \underline{ = 12}  \hspace{0.05cm}.$$
 
:$$|z_0|^2 = 10\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 10 \hspace{0.15cm} \underline{ = 12}  \hspace{0.05cm}.$$
  
  
'''(4)''' Richtig ist der <u>Lösungsvorschlag 1</u>, wie bereits in der Musterlösung zu '''(2)''' hergeleitet.  
+
'''(4)''' Correct is the&nbsp; <u>solution 1</u>, as already derived in the solution&nbsp; '''(2)'''.  
  
Richtig wären auch die folgenden Aussagen:
+
The following statements would also be correct:
* Die &bdquo;blaue&rdquo; AKF liegt um 4 über der &bdquo;schwarzen&rdquo;.
+
* The blue ACF is 4 over the black one.
* Die &bdquo;grüne&rdquo; AKF liegt um 6 über der &bdquo;blauen&rdquo;.
+
* The green ACF is 6 over the blue one.
  
  
  
'''(5)''' <u>Alle Lösungsvorschläge treffen zu</u>.
+
'''(5)''' <u>All solution suggestions apply</u>:
* Das &bdquo;schwarze&rdquo; LDS ist ein [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading|Jakes&ndash;Spektrum]] und damit auch kontinuierlich, das heißt, innerhalb eines Intervalls sind alle Frequenzen vorhanden.
+
* The black PSD is a&nbsp; [[Mobile_Communications/Statistical_bindings_within_the_Rayleigh_process#ACF_und_PDS_with_Rayleigh.E2.80.93Fading|Jakes spectrum]]&nbsp; and therefore continuous, i.e. all frequencies are present within an interval.
* In der Autokorrelationsfunktion (AKF) des blauen bzw. des grünen Kanals tritt zusätzlich die Konstante $|z_0|^2$ auf.
+
* In the auto-correlation function (ACF) of the blue or green channel, the constant&nbsp; $|z_0|^2$&nbsp; also occurs.
* Im Leistungsdichtespektrum (LDS) gibt es wegen dieser Konstanten in der AKF jeweils Diracfunktionen bei der Dopplerfrequenz $f_{\rm D} = 0$ mit dem Gewicht $|z_0|^2$.
+
* In the power-spectral density (PSD), there are Dirac functions at the Doppler frequency&nbsp; $f_{\rm D} = 0$&nbsp; with the weight&nbsp; $|z_0|^2$ because&nbsp; of these constants in the ACF.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^1.4 Fading with Direct Path Component^]]
+
[[Category:Mobile Communications: Exercises|^1.4 Fading with Direct Path Component^]]

Latest revision as of 16:06, 17 February 2022

Rice PDF for different values of  $z_0^2$

One speaks of  "Rice fading"  if the complex factor  $z(t)$  describing the mobile radio channel contains besides the purely stochastic component  $x(t) +{\rm j} \cdot y(t)$  a deterministic part of the form  $x_0 + {\rm j} \cdot y_0$.

The equations of Rice fading can be summarized briefly as follows:

$$r(t) = z(t) \cdot s(t) ,$$
$$z(t) = x(t) + {\rm j} \cdot y(t) ,$$
$$x(t) = u(t) + x_0 ,$$
$$y(t) = v(t) + y_0 .$$

The following applies:

  • The direct path is defined by the complex constant  $z_0 = x_0 + {\rm j} \cdot y_0$.  The magnitude of this time-invariant component is
$$|z_0| = \sqrt{x_0^2 + y_0^2}\hspace{0.05cm}.$$
  • $u(t)$  and  $v(t)$  are zero-mean Gaussian random processes, both with variance  $\sigma^2$  and uncorrelated with each other.  They model scattering, refraction and diffraction effects on a variety of indirect paths.
  • The magnitude  $a(t) = |z(t)|$  has a Rice probability density function  $\rm (PDF)$, which gives this channel model its name.  For   $a ≥ 0$, the PDF is
$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.2cm}{\rm I }_0 (u) = \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.$$

The graph shows the Rice PDF for  $|z_0|^2 = 0,\ 2, \ 4, \ 10$  and  $20$.  For all curves, we have   $\sigma = 1$   ⇒   $\sigma^2 = 1$.


In this task, however, we will not consider the PDF of the magnitude, but the auto-correlation function  $\rm (ACF)$  of the complex factor  $z(t)$,

$$\varphi_z ({\rm \Delta}t) = {\rm E}\big [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\big ] \hspace{0.05cm},$$

and the corresponding power-spectral density  $\rm (PSD)$

$${\it \Phi}_z (f_{\rm D}) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.3cm} \varphi_z ({\rm \Delta}t) \hspace{0.05cm}.$$




Notes:



Questions

1

Which value of   $|z_0|^2$  corresponds to Rayleigh fading?

$|z_0|^2 \ = \ $

$\ \rm $

2

Let  $|z_0|^2 \ne 0$.  Which of the following functions depend only on  $|z_0|^2 = x_0^2$ + $y_0^2$,  but not on its components  $x_0^2$  and  $y_0^2$  alone?

PDF  $f_x(x)$  of the real part,
PDF  $f_y(y)$  of the imaginary part,
PDF  $f_a(a)$  of the magnitude,
PDF  $f_{\rm \phi}(\phi)$  of the phase,
ACF  $\varphi_z(\Delta t)$  the complex quantity  $z(t)$,
PDS  ${\it \Phi}_z(f_{\rm D})$  the complex quantity  $z(t)$.

3

Calculate the second order moment  ${\rm E}\big[|z(t)|^2\big]$  for different values of  $|z_0|^2$.  Assume   $\sigma^2 = 1$.

$|z_0|^2 = 0\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $

$\ \ \rm $
$|z_0|^2 = 2\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $

$\ \ \rm $
$|z_0|^2 = 10\text{:} \hspace{0.3cm} {\rm E}\big[|z(t)|^2\big] \ = \ $

$\ \ \rm $

4

How differ the auto-correlation function  $\rm (ACF)$  of the black, the blue and the green channel?

The "blue" ACF is above the "black" ACF by about  $4$  units.
The "blue" ACF is below the "black" ACF by about  $2$  units.
The "green" ACF is wider than the "blue" by the factor  $2.5$ .

5

How differ the power-spectral density  $\rm (PSD)$  among the black, blue, and green mobile radio channels?

The "black" PSD is purely continuous (no Dirac).
The "blue" and "green" PSD contain one Dirac each.
The "green" Dirac has a greater weight than the "blue" one.


Solution

(1) Rayleigh fading  results from the Rice fading  with  $|z_0|^2 \ \underline {= \ 0}$.


(2) Options 3, 5 and 6 are correct:

It is obvious that

  • $f_x(x)$  depends only on  $x_0$,
  • $f_y(y)$  depends only on  $y_0$,
  • $f_{\rm \phi}(\phi)$ depends only on the ratio $y_0/x_0$.


The given equation for the PDF  $f_a(a)$  shows that the magnitude  $a$  depends only on  $|z_0|$.

For the ACF, using  $z(t) = x(t) + {\rm j} \cdot y(t)$  we have

$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\right] = {\rm E}\left [ \left ( x(t) + {\rm j} \cdot y(t) \right )\cdot (x(t + {\rm \Delta}t) - {\rm j} \cdot (y(t+ {\rm \Delta}t)\right ] \hspace{0.05cm}.$$

Because of the statistical independence between real and imaginary parts, the equation can be simplified as follows:

$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ x(t) \cdot x(t + {\rm \Delta}t)\right ] + {\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] \hspace{0.05cm}.$$

With  $x(t) = u(t) + x_0$  and  $t' = t + \Delta t$, the first part results in  $x(t) = u(t) + x_0$:

$${\rm E}\left [ x(t) \cdot x(t')\right ] = {\rm E}\left [ u(t) \cdot u(t')\right ] + x_0 \cdot {\rm E}\left [ u(t) \right ] + x_0 \cdot {\rm E}\left [ u(t') \right ] + x_0^2\hspace{0.05cm},$$
$$\Rightarrow \hspace{0.3cm} {\rm E}\left [ x(t) \cdot x(t + {\rm \Delta}t)\right ] = {\rm E}\left [ u(t) \cdot u(t + {\rm \Delta}t)\right ] + x_0^2 = \varphi_u ({\rm \Delta}t) + x_0^2 \hspace{0.05cm}.$$

This takes into account that the Gaussian random variable  $u(t)$  has zero mean and has the variance  $\sigma^2$.

In the same way with  $y(t) = v(t) + y_0$  is obtained:

$${\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] = \ ... \ = \varphi_v ({\rm \Delta}t) + y_0^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_z ({\rm \Delta}t) = \varphi_u ({\rm \Delta}t) + \varphi_v ({\rm \Delta}t) + x_0^2 + y_0^2 = 2 \cdot \varphi_u ({\rm \Delta}t) + |z_0|^2 \hspace{0.05cm}.$$

But if the ACF  $\varphi_z(\Delta t)$  only depends on  $|z_0^2|$, then this also applies to the Fourier transform   ⇒   power-spectral density  $\rm PDS$.


(3) The second order moment  ("power")  can be calculated from the PDF of the magnitude:

$${\rm E}\left [ |z(t)|^2 \right ] = {\rm E}\left [ a^2 \right ] = \int_{0}^{\infty}a^2 \cdot f_a(a)\hspace{0.15cm}{\rm d}a \hspace{0.05cm}.$$

At the same time,  the power is also determined by the ACF:

$${\rm E}\left [ |z(t)|^2 \right ] = \varphi_z ({\rm \delta}t = 0) = 2 \cdot \varphi_u ({\rm \delta}t = 0) + |z_0|^2 = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$

With  $\sigma = 1$  you get the following numerical results:

$$ \ |z_0|^2 = 0\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 0 \hspace{0.15cm} \underline{ = 2} \hspace{0.05cm},$$
$$ \ |z_0|^2 = 2\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 2 \hspace{0.15cm} \underline{ = 4} \hspace{0.05cm},$$
$$|z_0|^2 = 10\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 10 \hspace{0.15cm} \underline{ = 12} \hspace{0.05cm}.$$


(4) Correct is the  solution 1, as already derived in the solution  (2).

The following statements would also be correct:

  • The blue ACF is 4 over the black one.
  • The green ACF is 6 over the blue one.


(5) All solution suggestions apply:

  • The black PSD is a  Jakes spectrum  and therefore continuous, i.e. all frequencies are present within an interval.
  • In the auto-correlation function (ACF) of the blue or green channel, the constant  $|z_0|^2$  also occurs.
  • In the power-spectral density (PSD), there are Dirac functions at the Doppler frequency  $f_{\rm D} = 0$  with the weight  $|z_0|^2$ because  of these constants in the ACF.