Difference between revisions of "Aufgaben:Exercise 1.6: Autocorrelation Function and PDS with Rice Fading"

From LNTwww
 
(19 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component}}
  
[[File:P_ID2132__Mob_A_1_6.png|right|frame|Rice PDF for different values of   $z_0^2$]]
+
[[File:P_ID2132__Mob_A_1_6.png|right|frame|Rice PDF for different values of  $z_0^2$]]
One speaks of "Rice fading" if the complex factor describing the mobile radio channel contains   $z(t)$  besides the purely stochastic component  $x(t) +{\rm j} \cdot y(t)$  a deterministic part of the form  $x_0 + {\rm j} \cdot y_0$ .
+
One speaks of  "Rice fading"  if the complex factor  $z(t)$  describing the mobile radio channel contains  besides the purely stochastic component  $x(t) +{\rm j} \cdot y(t)$  a deterministic part of the form  $x_0 + {\rm j} \cdot y_0$.
  
 
The equations of Rice fading can be summarized briefly as follows:
 
The equations of Rice fading can be summarized briefly as follows:
Line 15: Line 15:
 
:$$|z_0| = \sqrt{x_0^2 + y_0^2}\hspace{0.05cm}.$$
 
:$$|z_0| = \sqrt{x_0^2 + y_0^2}\hspace{0.05cm}.$$
 
* $u(t)$  and  $v(t)$  are zero-mean Gaussian random processes, both with variance  $\sigma^2$  and uncorrelated with each other.  They model scattering, refraction and diffraction effects on a variety of indirect paths.
 
* $u(t)$  and  $v(t)$  are zero-mean Gaussian random processes, both with variance  $\sigma^2$  and uncorrelated with each other.  They model scattering, refraction and diffraction effects on a variety of indirect paths.
* The magnitude  $a(t) = |z(t)|$  has a Rice probability density function (PDF), which gives this channel model its name.
+
* The magnitude  $a(t) = |z(t)|$  has a Rice probability density function  $\rm (PDF)$, which gives this channel model its name.  For   $a ≥ 0$, the PDF is
* For   $a ≥ 0$, the PDF is
 
 
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.2cm}{\rm I }_0 (u)  =  
 
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.2cm}{\rm I }_0 (u)  =  
 
  \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
The graph shows the Rice PDF for  $|z_0|^2 = 0,\ 2, \ 4, \ 10$  and  $20$. For all curves, we have   $\sigma = 1$   ⇒   $\sigma^2 = 1$.
+
The graph shows the Rice PDF for  $|z_0|^2 = 0,\ 2, \ 4, \ 10$  and  $20$.  For all curves, we have   $\sigma = 1$   ⇒   $\sigma^2 = 1$.
  
  
In this task, however, we will not consider the PDF of the magnitude, but the autocorrelation function  $\rm (ACF)$  of the complex factor  $z(t)$,
+
In this task, however, we will not consider the PDF of the magnitude, but the auto-correlation function  $\rm (ACF)$  of the complex factor  $z(t)$,
$$\varphi_z ({\rm \Delta}t) = {\rm E}\big [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\big ]
+
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\big [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\big ]
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
and the corresponding power density spectrum  $\rm (PDS)$
+
and the corresponding power-spectral density  $\rm (PSD)$
 
:$${\it \Phi}_z (f_{\rm D})  
 
:$${\it \Phi}_z (f_{\rm D})  
 
  \hspace{0.3cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.3cm} \varphi_z ({\rm \Delta}t)   
 
  \hspace{0.3cm}  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.3cm} \varphi_z ({\rm \Delta}t)   
Line 40: Line 39:
 
''Notes:''  
 
''Notes:''  
 
* This task belongs to chapter  [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component|Non-frequency selective fading with direct component]].  
 
* This task belongs to chapter  [[Mobile_Communications/Non-frequency_selective_fading_with_direct_component|Non-frequency selective fading with direct component]].  
* Reference is also made to the chapters  [[Theory_of_Stochastic_Signals/Auto_Correlation_Function_(ACF)|Autocorrelation function (ACF)]]  and  [[Theory_of_Stochastic_Signals/Power_Density_Spectrum_(PDS)|Power Density Spectrum (PDS)]]  in the book „Stochastic Signal Theory”.
+
* Reference is also made to the chapters  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function_(ACF)|Auto-Correlation function (ACF)]]  and  [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]]  in the book "Stochastic Signal Theory".
 
   
 
   
  
Line 48: Line 47:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which value of &nbsp; $|z_0|^2$ corresponds to Rayleigh fading?
+
{Which value of &nbsp; $|z_0|^2$&nbsp; corresponds to Rayleigh fading?
 
|type="{}"}
 
|type="{}"}
 
$|z_0|^2 \ = \ $ { 0. } $\ \rm $
 
$|z_0|^2 \ = \ $ { 0. } $\ \rm $
  
{Let $|z_0|^2 \ne 0$. Which of the following functions depend only on&nbsp; $|z_0|^2 = x_0^2$ + $y_0^2$&nbsp; but not on its components&nbsp; $x_0^2$&nbsp; and&nbsp; $y_0^2$&nbsp; alone?  
+
{Let&nbsp; $|z_0|^2 \ne 0$.&nbsp; Which of the following functions depend only on&nbsp; $|z_0|^2 = x_0^2$ + $y_0^2$,&nbsp; but not on its components&nbsp; $x_0^2$&nbsp; and&nbsp; $y_0^2$&nbsp; alone?  
 
|type="[]"}
 
|type="[]"}
 
- PDF&nbsp; $f_x(x)$&nbsp; of the real part,
 
- PDF&nbsp; $f_x(x)$&nbsp; of the real part,
 
- PDF&nbsp; $f_y(y)$&nbsp; of the imaginary part,
 
- PDF&nbsp; $f_y(y)$&nbsp; of the imaginary part,
+ PDF&nbsp; $f_a(a)$&nbsp; of the amount
+
+ PDF&nbsp; $f_a(a)$&nbsp; of the magnitude,
 
- PDF&nbsp; $f_{\rm \phi}(\phi)$&nbsp; of the phase,
 
- PDF&nbsp; $f_{\rm \phi}(\phi)$&nbsp; of the phase,
 
+ ACF&nbsp; $\varphi_z(\Delta t)$&nbsp; the complex quantity&nbsp; $z(t)$,
 
+ ACF&nbsp; $\varphi_z(\Delta t)$&nbsp; the complex quantity&nbsp; $z(t)$,
+ PSD&nbsp; ${\it \Phi}_z(f_{\rm D})$&nbsp; the complex quantity&nbsp; $z(t)$.
+
+ PDS&nbsp; ${\it \Phi}_z(f_{\rm D})$&nbsp; the complex quantity&nbsp; $z(t)$.
  
{Calculate the root mean square value&nbsp; ${\rm E}\big[|z(t)|^2\big]$ for different values of&nbsp; $|z_0|^2$. Assume &nbsp; $\sigma^2 = 1$.
+
{Calculate the second order moment&nbsp; ${\rm E}\big[|z(t)|^2\big]$&nbsp; for different values of&nbsp; $|z_0|^2$.&nbsp; Assume &nbsp; $\sigma^2 = 1$.
 
|type="{}"}
 
|type="{}"}
 
$|z_0|^2 = 0\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 2 3% } $\ \ \rm $
 
$|z_0|^2 = 0\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 2 3% } $\ \ \rm $
Line 67: Line 66:
 
$|z_0|^2 = 10\text{:} \hspace{0.3cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 12 3% } $\ \ \rm $
 
$|z_0|^2 = 10\text{:} \hspace{0.3cm} {\rm E}\big[|z(t)|^2\big] \ = \ $ { 12 3% } $\ \ \rm $
  
{How do the autocorrelation functions (ACFs) of the black, the blue and the green channel differ?
+
{How differ the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of the black, the blue and the green channel?
 
|type="[]"}
 
|type="[]"}
+ The &bdquo;blue&rdquo; ACF is above the &bdquo;black&rdquo; ACF by about &nbsp;$4$&nbsp; units.
+
+ The "blue" ACF is above the "black" ACF by about &nbsp;$4$&nbsp; units.
- The &bdquo;blue&rdquo; ACF is below the &bdquo;black&rdquo; ACF by about &nbsp;$2$&nbsp; units.
+
- The "blue" ACF is below the "black" ACF by about &nbsp;$2$&nbsp; units.
- The &bdquo;green&rdquo; ACF is wider than the &bdquo;blue&rdquo; by the factor &nbsp;$2.5$&nbsp;.
+
- The "green" ACF is wider than the "blue" by the factor &nbsp;$2.5$&nbsp;.
  
{How do the power spectral densities (PSDs) differ among the black, blue, and green mobile radio channels?
+
{How differ the power-spectral density&nbsp; $\rm (PSD)$&nbsp; among the black, blue, and green mobile radio channels?
 
|type="[]"}
 
|type="[]"}
+ The &bdquo;black&rdquo; PSD is purely continuous (no Dirac).
+
+ The "black" PSD is purely continuous (no Dirac).
+ The &bdquo;blue&rdquo; and &bdquo;green&rdquo; PSDs contain one Dirac each.
+
+ The "blue" and "green" PSD contain one Dirac each.
+ The &bdquo;green&rdquo; Dirac has a greater weight than the &bdquo;blue&rdquo; one.
+
+ The "green" Dirac has a greater weight than the "blue" one.
 
</quiz>
 
</quiz>
  
===Solutions===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''' <i>Rayleigh fading</i> results from the <i>Rice fading</i> with $|z_0|^2 \ \underline {= \ 0}$.
+
'''(1)''' Rayleigh fading&nbsp; results from the Rice fading&nbsp; with&nbsp; $|z_0|^2 \ \underline {= \ 0}$.
  
  
Line 88: Line 87:
  
 
It is obvious that
 
It is obvious that
* $f_x(x)$ depends on $x_0$
+
* $f_x(x)$&nbsp; depends only on&nbsp; $x_0$,
* $f_y(y)$ depends on $y_0$
+
* $f_y(y)$&nbsp; depends only on&nbsp; $y_0$,
* $f_{\rm \phi}(\phi)$ depends on the ratio $y_0/x_0$.
+
* $f_{\rm \phi}(\phi)$ depends only on the ratio $y_0/x_0$.
  
  
The given equation for the PDF $f_a(a)$ shows that the magnitude $a$ depends only on $|z_0|$.
+
The given equation for the PDF&nbsp; $f_a(a)$&nbsp; shows that the magnitude&nbsp; $a$&nbsp; depends only on&nbsp; $|z_0|$.
  
For the ACF, using $z(t) = x(t) + {\rm j} \cdot y(t)$ we have
+
For the ACF, using&nbsp; $z(t) = x(t) + {\rm j} \cdot y(t)$&nbsp; we have
 
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\right] =  {\rm E}\left [ \left ( x(t) + {\rm j} \cdot y(t) \right )\cdot (x(t + {\rm \Delta}t) - {\rm j} \cdot (y(t+ {\rm \Delta}t)\right ]
 
:$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\right] =  {\rm E}\left [ \left ( x(t) + {\rm j} \cdot y(t) \right )\cdot (x(t + {\rm \Delta}t) - {\rm j} \cdot (y(t+ {\rm \Delta}t)\right ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 103: Line 102:
 
  {\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] \hspace{0.05cm}.$$
 
  {\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] \hspace{0.05cm}.$$
  
With $x(t) = u(t) + x_0$ and $t' = t + \Delta t$, the first part results in $x(t) = u(t) + x_0$:  
+
With&nbsp; $x(t) = u(t) + x_0$&nbsp; and&nbsp; $t' = t + \Delta t$, the first part results in&nbsp; $x(t) = u(t) + x_0$:  
 
:$${\rm E}\left [ x(t) \cdot x(t')\right ] = {\rm E}\left [ u(t) \cdot u(t')\right ] + x_0 \cdot {\rm E}\left [ u(t) \right ]
 
:$${\rm E}\left [ x(t) \cdot x(t')\right ] = {\rm E}\left [ u(t) \cdot u(t')\right ] + x_0 \cdot {\rm E}\left [ u(t) \right ]
 
   + x_0 \cdot {\rm E}\left [ u(t') \right ] + x_0^2\hspace{0.05cm},$$
 
   + x_0 \cdot {\rm E}\left [ u(t') \right ] + x_0^2\hspace{0.05cm},$$
Line 109: Line 108:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
This takes into account that the Gaussian random variable $u(t)$ has zero mean and has the variance $\sigma^2$.
+
This takes into account that the Gaussian random variable&nbsp; $u(t)$&nbsp; has zero mean and has the variance&nbsp; $\sigma^2$.
  
In the same way with $y(t) = \upsilon (t) + y_0$ is obtained:
+
In the same way with&nbsp; $y(t) = v(t) + y_0$&nbsp; is obtained:
 
:$${\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] = \ ... \ = \varphi_v ({\rm \Delta}t) + y_0^2 \hspace{0.3cm}  
 
:$${\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] = \ ... \ = \varphi_v ({\rm \Delta}t) + y_0^2 \hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} \varphi_z ({\rm \Delta}t) = \varphi_u ({\rm \Delta}t) + \varphi_v ({\rm \Delta}t)  + x_0^2 + y_0^2
 
\Rightarrow \hspace{0.3cm} \varphi_z ({\rm \Delta}t) = \varphi_u ({\rm \Delta}t) + \varphi_v ({\rm \Delta}t)  + x_0^2 + y_0^2
Line 117: Line 116:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
But if the ACF $\varphi_z(\Delta t)$ only depends on $|z_0^2|$, then this also applies to the Fourier transform &bdquo;LDS&rdquo;.  
+
But if the ACF&nbsp; $\varphi_z(\Delta t)$&nbsp; only depends on&nbsp; $|z_0^2|$, then this also applies to the Fourier transform &nbsp; &rArr; &nbsp; power-spectral density&nbsp; $\rm PDS$.  
  
  
'''(3)''' The root mean square can be calculated from the PDF of the magnitude:
+
'''(3)''' The second order moment&nbsp; ("power")&nbsp; can be calculated from the PDF of the magnitude:
 
:$${\rm E}\left [ |z(t)|^2 \right ] = {\rm E}\left [ a^2 \right ] = \int_{0}^{\infty}a^2 \cdot f_a(a)\hspace{0.15cm}{\rm d}a
 
:$${\rm E}\left [ |z(t)|^2 \right ] = {\rm E}\left [ a^2 \right ] = \int_{0}^{\infty}a^2 \cdot f_a(a)\hspace{0.15cm}{\rm d}a
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
At the same time, the root mean square value &ndash; i.e. the power &ndash; is also determined by the AKF:
+
At the same time,&nbsp; the power is also determined by the ACF:
$${\rm E}\left [ |z(t)|^2 \right ] = \varphi_z ({\rm \delta}t = 0) = 2 \cdot \varphi_u ({\rm \delta}t = 0) + |z_0|^2 = 2 \cdot \sigma^2 + |z_0|^2
+
:$${\rm E}\left [ |z(t)|^2 \right ] = \varphi_z ({\rm \delta}t = 0) = 2 \cdot \varphi_u ({\rm \delta}t = 0) + |z_0|^2 = 2 \cdot \sigma^2 + |z_0|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
With $\sigma = 1$ you get the following numerical results:
+
With&nbsp; $\sigma = 1$&nbsp; you get the following numerical results:
 
:$$ \ |z_0|^2 = 0\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 0 \hspace{0.15cm} \underline{ = 2}  \hspace{0.05cm},$$
 
:$$ \ |z_0|^2 = 0\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 0 \hspace{0.15cm} \underline{ = 2}  \hspace{0.05cm},$$
 
:$$ \ |z_0|^2 = 2\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 2 \hspace{0.15cm} \underline{ = 4}  \hspace{0.05cm},$$
 
:$$ \ |z_0|^2 = 2\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 2 \hspace{0.15cm} \underline{ = 4}  \hspace{0.05cm},$$
Line 134: Line 133:
  
  
'''(4)''' Correct is the <u>solution 1</u>, as already derived in the sample solution for '''(2)'''.  
+
'''(4)''' Correct is the&nbsp; <u>solution 1</u>, as already derived in the solution&nbsp; '''(2)'''.  
  
 
The following statements would also be correct:
 
The following statements would also be correct:
* The &bdquo;blue&rdquo; AKF is 4 over the &bdquo;black&rdquo;.
+
* The blue ACF is 4 over the black one.
* The &bdquo;green&rdquo; AKF is 6 over the &bdquo;blue&rdquo;.
+
* The green ACF is 6 over the blue one.
  
  
  
'''(5)''' <u>All solution suggestions apply</u>.
+
'''(5)''' <u>All solution suggestions apply</u>:
* The &bdquo;black&rdquo; LDS is a [[Mobile_Communications/Statistical_Bonds_within_Rayleigh%E2%80%93Process#AKF_and_LDS_with_Rayleigh.E2.80.93Fading|Jakes&ndash;Spectrum]] and therefore continuous, i.e. all frequencies are present within an interval.
+
* The black PSD is a&nbsp; [[Mobile_Communications/Statistical_bindings_within_the_Rayleigh_process#ACF_und_PDS_with_Rayleigh.E2.80.93Fading|Jakes spectrum]]&nbsp; and therefore continuous, i.e. all frequencies are present within an interval.
* In the autocorrelation function (AKF) of the blue or green channel, the constant $|z_0|^2$ also occurs.
+
* In the auto-correlation function (ACF) of the blue or green channel, the constant&nbsp; $|z_0|^2$&nbsp; also occurs.
* In the power density spectrum (LDS), there are Dirac functions in the GCF at the Doppler frequency $f_{\rm D} = 0$ with the weight $|z_0|^2$ because of these constants.
+
* In the power-spectral density (PSD), there are Dirac functions at the Doppler frequency&nbsp; $f_{\rm D} = 0$&nbsp; with the weight&nbsp; $|z_0|^2$ because&nbsp; of these constants in the ACF.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Exercises for Mobile Communications|^1.4 Fading with Direct Path Component^]]
+
[[Category:Mobile Communications: Exercises|^1.4 Fading with Direct Path Component^]]

Latest revision as of 16:06, 17 February 2022

Rice PDF for different values of  $z_0^2$

One speaks of  "Rice fading"  if the complex factor  $z(t)$  describing the mobile radio channel contains besides the purely stochastic component  $x(t) +{\rm j} \cdot y(t)$  a deterministic part of the form  $x_0 + {\rm j} \cdot y_0$.

The equations of Rice fading can be summarized briefly as follows:

$$r(t) = z(t) \cdot s(t) ,$$
$$z(t) = x(t) + {\rm j} \cdot y(t) ,$$
$$x(t) = u(t) + x_0 ,$$
$$y(t) = v(t) + y_0 .$$

The following applies:

  • The direct path is defined by the complex constant  $z_0 = x_0 + {\rm j} \cdot y_0$.  The magnitude of this time-invariant component is
$$|z_0| = \sqrt{x_0^2 + y_0^2}\hspace{0.05cm}.$$
  • $u(t)$  and  $v(t)$  are zero-mean Gaussian random processes, both with variance  $\sigma^2$  and uncorrelated with each other.  They model scattering, refraction and diffraction effects on a variety of indirect paths.
  • The magnitude  $a(t) = |z(t)|$  has a Rice probability density function  $\rm (PDF)$, which gives this channel model its name.  For   $a ≥ 0$, the PDF is
$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}, \hspace{0.2cm}{\rm I }_0 (u) = \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.$$

The graph shows the Rice PDF for  $|z_0|^2 = 0,\ 2, \ 4, \ 10$  and  $20$.  For all curves, we have   $\sigma = 1$   ⇒   $\sigma^2 = 1$.


In this task, however, we will not consider the PDF of the magnitude, but the auto-correlation function  $\rm (ACF)$  of the complex factor  $z(t)$,

$$\varphi_z ({\rm \Delta}t) = {\rm E}\big [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\big ] \hspace{0.05cm},$$

and the corresponding power-spectral density  $\rm (PSD)$

$${\it \Phi}_z (f_{\rm D}) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.3cm} \varphi_z ({\rm \Delta}t) \hspace{0.05cm}.$$




Notes:



Questions

1

Which value of   $|z_0|^2$  corresponds to Rayleigh fading?

$|z_0|^2 \ = \ $

$\ \rm $

2

Let  $|z_0|^2 \ne 0$.  Which of the following functions depend only on  $|z_0|^2 = x_0^2$ + $y_0^2$,  but not on its components  $x_0^2$  and  $y_0^2$  alone?

PDF  $f_x(x)$  of the real part,
PDF  $f_y(y)$  of the imaginary part,
PDF  $f_a(a)$  of the magnitude,
PDF  $f_{\rm \phi}(\phi)$  of the phase,
ACF  $\varphi_z(\Delta t)$  the complex quantity  $z(t)$,
PDS  ${\it \Phi}_z(f_{\rm D})$  the complex quantity  $z(t)$.

3

Calculate the second order moment  ${\rm E}\big[|z(t)|^2\big]$  for different values of  $|z_0|^2$.  Assume   $\sigma^2 = 1$.

$|z_0|^2 = 0\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $

$\ \ \rm $
$|z_0|^2 = 2\text{:} \hspace{0.52cm} {\rm E}\big[|z(t)|^2\big] \ = \ $

$\ \ \rm $
$|z_0|^2 = 10\text{:} \hspace{0.3cm} {\rm E}\big[|z(t)|^2\big] \ = \ $

$\ \ \rm $

4

How differ the auto-correlation function  $\rm (ACF)$  of the black, the blue and the green channel?

The "blue" ACF is above the "black" ACF by about  $4$  units.
The "blue" ACF is below the "black" ACF by about  $2$  units.
The "green" ACF is wider than the "blue" by the factor  $2.5$ .

5

How differ the power-spectral density  $\rm (PSD)$  among the black, blue, and green mobile radio channels?

The "black" PSD is purely continuous (no Dirac).
The "blue" and "green" PSD contain one Dirac each.
The "green" Dirac has a greater weight than the "blue" one.


Solution

(1) Rayleigh fading  results from the Rice fading  with  $|z_0|^2 \ \underline {= \ 0}$.


(2) Options 3, 5 and 6 are correct:

It is obvious that

  • $f_x(x)$  depends only on  $x_0$,
  • $f_y(y)$  depends only on  $y_0$,
  • $f_{\rm \phi}(\phi)$ depends only on the ratio $y_0/x_0$.


The given equation for the PDF  $f_a(a)$  shows that the magnitude  $a$  depends only on  $|z_0|$.

For the ACF, using  $z(t) = x(t) + {\rm j} \cdot y(t)$  we have

$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ z(t) \cdot z^{\star}(t + {\rm \Delta}t)\right] = {\rm E}\left [ \left ( x(t) + {\rm j} \cdot y(t) \right )\cdot (x(t + {\rm \Delta}t) - {\rm j} \cdot (y(t+ {\rm \Delta}t)\right ] \hspace{0.05cm}.$$

Because of the statistical independence between real and imaginary parts, the equation can be simplified as follows:

$$\varphi_z ({\rm \Delta}t) = {\rm E}\left [ x(t) \cdot x(t + {\rm \Delta}t)\right ] + {\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] \hspace{0.05cm}.$$

With  $x(t) = u(t) + x_0$  and  $t' = t + \Delta t$, the first part results in  $x(t) = u(t) + x_0$:

$${\rm E}\left [ x(t) \cdot x(t')\right ] = {\rm E}\left [ u(t) \cdot u(t')\right ] + x_0 \cdot {\rm E}\left [ u(t) \right ] + x_0 \cdot {\rm E}\left [ u(t') \right ] + x_0^2\hspace{0.05cm},$$
$$\Rightarrow \hspace{0.3cm} {\rm E}\left [ x(t) \cdot x(t + {\rm \Delta}t)\right ] = {\rm E}\left [ u(t) \cdot u(t + {\rm \Delta}t)\right ] + x_0^2 = \varphi_u ({\rm \Delta}t) + x_0^2 \hspace{0.05cm}.$$

This takes into account that the Gaussian random variable  $u(t)$  has zero mean and has the variance  $\sigma^2$.

In the same way with  $y(t) = v(t) + y_0$  is obtained:

$${\rm E}\left [ y(t) \cdot y(t + {\rm \Delta}t)\right ] = \ ... \ = \varphi_v ({\rm \Delta}t) + y_0^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_z ({\rm \Delta}t) = \varphi_u ({\rm \Delta}t) + \varphi_v ({\rm \Delta}t) + x_0^2 + y_0^2 = 2 \cdot \varphi_u ({\rm \Delta}t) + |z_0|^2 \hspace{0.05cm}.$$

But if the ACF  $\varphi_z(\Delta t)$  only depends on  $|z_0^2|$, then this also applies to the Fourier transform   ⇒   power-spectral density  $\rm PDS$.


(3) The second order moment  ("power")  can be calculated from the PDF of the magnitude:

$${\rm E}\left [ |z(t)|^2 \right ] = {\rm E}\left [ a^2 \right ] = \int_{0}^{\infty}a^2 \cdot f_a(a)\hspace{0.15cm}{\rm d}a \hspace{0.05cm}.$$

At the same time,  the power is also determined by the ACF:

$${\rm E}\left [ |z(t)|^2 \right ] = \varphi_z ({\rm \delta}t = 0) = 2 \cdot \varphi_u ({\rm \delta}t = 0) + |z_0|^2 = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$

With  $\sigma = 1$  you get the following numerical results:

$$ \ |z_0|^2 = 0\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 0 \hspace{0.15cm} \underline{ = 2} \hspace{0.05cm},$$
$$ \ |z_0|^2 = 2\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 2 \hspace{0.15cm} \underline{ = 4} \hspace{0.05cm},$$
$$|z_0|^2 = 10\text{:} \ \hspace{0.3cm}{\rm E}\left [ |z(t)|^2 \right ] = 2 + 10 \hspace{0.15cm} \underline{ = 12} \hspace{0.05cm}.$$


(4) Correct is the  solution 1, as already derived in the solution  (2).

The following statements would also be correct:

  • The blue ACF is 4 over the black one.
  • The green ACF is 6 over the blue one.


(5) All solution suggestions apply:

  • The black PSD is a  Jakes spectrum  and therefore continuous, i.e. all frequencies are present within an interval.
  • In the auto-correlation function (ACF) of the blue or green channel, the constant  $|z_0|^2$  also occurs.
  • In the power-spectral density (PSD), there are Dirac functions at the Doppler frequency  $f_{\rm D} = 0$  with the weight  $|z_0|^2$ because  of these constants in the ACF.