Difference between revisions of "Aufgaben:Exercise 1.7: Coding for Broadband ISDN"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Weiterentwicklungen von ISDN
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Further_Developments_of_ISDN
 
}}
 
}}
  
[[File:EN_Bei_A_1_7.png|right|frame|HDB3- und 1T2B-Codierung]]
+
[[File:EN_Bei_A_1_7.png|right|frame|HDB3 and 1T2B coding]]
Bei herkömmlichem ISDN über Kupferleitungen wird der HDB3–Code verwendet – siehe  [[Aufgaben:Aufgabe_1.5:_HDB3–Codierung|Aufgabe 1.5]]:  
+
For conventional ISDN over copper lines the HDB3 code is used – see  [[Aufgaben:Exercise_1.5:_HDB3_Coding|"Exercise 1.5"]]:  
  
Dieser wurde vom so genannten  AMI–Code abgeleitet,  
+
This was derived from the so-called AMI code,  
*ist wie dieser ein Pseudoternärcode,  
+
*is like the latter a pseudo-ternary code,
*vermeidet aber mehr als drei aufeinander folgende  $0$”–Symbole,  
+
*but avoids more than three consecutive  "$0$" symbols,
*indem die strengere AMI–Codierregel bei längeren Nullfolgen bewusst verletzt wird.
+
*by deliberately violating the stricter AMI coding rule for longer zero sequences.
  
  
Die Grafik zeigt das HDB3–codierte Signal  $c(t)$, das sich aus dem binären redundanzfreien Quellensignal  $q(t)$  ergibt. Da im Quellensignal nicht mehr als drei aufeinanderfolgende Nullen auftreten, ist  $c(t)$  identisch mit dem AMI–codierten Signal.
+
The graph shows the HDB3 encoded signal  $c(t)$ resulting from the binary redundancy-free source signal  $q(t)$.  Since there are no more than three consecutive zeros in the source signal,  $c(t)$  is identical to the AMI-encoded signal.
  
Das Ende der 1990–Jahre geplante Breitband–ISDN sollte Datenraten bis 155 Mbit/s bereitstellen im Vergleich zu 144 kbit/s des herkömmlichen ISDN mit zwei B–Kanälen und einem D–Kanal. Um diese höhere Datenrate zu erreichen, musste
+
The broadband ISDN planned for the late 1990s was to provide data rates of up to 155 Mbit/s compared with 144 kbit/s of conventional ISDN with two B channels and one D channel. To achieve this higher data rate, it was necessary to
*zum einen eine neuere Technik (ATM) verwendet werden,  
+
*newer technology (ATM) had to be used,
*zum zweiten aber auch das Übertragungsmedium gewechselt werden, von der Kupferleitung zur Glasfaser.
+
*secondly, the transmission medium had to be changed from copper to fiber optics.
  
  
Da das HDB3–codierte Signal  $c(t) ∈ \{–1, \ 0, +1\}$  aber mittels Licht nicht übertragen werden kann, war eine zweite Codierung erforderlich. Der hierfür vorgesehene  '''1T2B–Code'''  ersetzt jedes Ternärsymbol durch zwei Binärsymbole. Das untere Diagramm zeigt beispielhaft das Binärsignal  $b(t) ∈ \{0, 1\}$, das sich nach dieser 1T2B–Codierung aus dem Signal  $c(t)$  ergibt.
+
However, since the HDB3-encoded signal  $c(t) ∈ \{–1, \ 0, +1\}$  cannot be transmitted by means of light, a second encoding was required. The  '''1T2B code'''  provided for this purpose replaces each ternary symbol with two binary symbols. The diagram below shows an example of the binary signal  $b(t) ∈ \{0, 1\}$, which results from the signal  $c(t)$  after this 1T2B coding.
  
Gehen Sie bei dieser Aufgabe davon aus, dass die Bitrate des redundanzfreien Quellensignals  $q(t)$  gleich  $R_{q} = 2.048 \ \rm Mbit/s$  beträgt. Die jeweiligen Symboldauern der Signale  $q(t),  c(t)$  und  $b(t)$  werden mit  $T_{q}$,  $T_{c}$  und  $T_{b}$  bezeichnet.
+
For this exercise, assume that the bit rate of the redundancy-free source signal  $q(t)$  is equal to  $R_{q} = 2.048 \ \rm Mbit/s$.  The respective symbol durations of the signals  $q(t),  c(t)$  and  $b(t)$  are denoted by  $T_{q}$,  $T_{c}$  and  $T_{b}$.   
  
Die äquivalente Bitrate des pseudoternären Signals  $c(t)$  ist  $R_{c} = {\rm log_2}(3)/T_{c}$, woraus mit der Bitrate  $R_{q} = 1/T_{q}$  des Quellensignals die relative Redundanz des AMI– bzw. des HDB3–Codes berechnet werden kann:
+
The equivalent bit rate of the pseudo-ternary signal  $c(t)$  is  $R_{c} = {\rm log_2}(3)/T_{c}$, from which the bit rate  $R_{q} = 1/T_{q}$  of the source signal can be used to calculate the relative redundancy of the AMI or HDB3 code:
 
:$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$
 
:$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$
  
Für den 1T2B–Code kann eine ähnliche Gleichung aufgestellt werden, ebenso wie für die beiden Codes in Kombination.
+
A similar equation can be established for the 1T2B code, as well as for the two codes in combination.
  
  
Line 34: Line 34:
  
  
''Hinweise:''  
+
''Notes:''  
  
*Die Aufgabe gehört zum Kapitel   [[Examples_of_Communication_Systems/Weiterentwicklungen_von_ISDN|Weiterentwicklungen von ISDN]].
+
*The exercise belongs to the chapter   [[Examples_of_Communication_Systems/Further_Developments_of_ISDN|"Further Developments of ISDN"]].
* Die Redundanz wird im Kapitel  [[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]]  des Buches „Digitalsignalübertragung” definiert und an Beispielen verdeutlicht.
+
* Redundancy is defined and illustrated with examples in the chapter  [[Digital_Signal_Transmission/Basics_of_Coded_Transmission|"Basics of Coded Transmission"]]  of the book "Digital Signal Transmission".
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Zuordnung hat der hier verwendete&nbsp; '''1T2B'''–Code?
+
{What is the assignment of the&nbsp; '''1T2B''' code?
 
|type="()"}
 
|type="()"}
 
- $c(t) = +1 \Rightarrow b(t) = 10, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 00, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 01,$
 
- $c(t) = +1 \Rightarrow b(t) = 10, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 00, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 01,$
Line 50: Line 50:
 
- $c(t) = +1 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 10.$
 
- $c(t) = +1 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 10.$
  
{Wie groß sind die Symboldauern von&nbsp; $q(t),&nbsp; c(t)$&nbsp; und&nbsp; $b(t)$?
+
{What are the symbol durations of&nbsp; $q(t),&nbsp; c(t)$&nbsp; and&nbsp; $b(t)$?
 
|type="{}"}
 
|type="{}"}
 
$T_{q} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 
$T_{q} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
Line 56: Line 56:
 
$T_{b} \ = \ $ { 0.244 3% } $\ \rm &micro; s$
 
$T_{b} \ = \ $ { 0.244 3% } $\ \rm &micro; s$
  
{Berechnen Sie die relative Redundanz des&nbsp; '''HDB3'''–Codes.
+
{Calculate the relative redundancy of the&nbsp; '''HDB3''' code.
 
|type="{}"}
 
|type="{}"}
 
$r_{\rm HDB3} \ = \ $ { 36.9 3% } $\ \%$
 
$r_{\rm HDB3} \ = \ $ { 36.9 3% } $\ \%$
  
{Berechnen Sie die relative Redundanz des&nbsp; '''1T2B'''–Codes.
+
{Calculate the relative redundancy of the&nbsp; '''1T2B''' code.
 
|type="{}"}
 
|type="{}"}
 
$r_{\rm 1T2B} \ = \ $ { 20.7 3% } $\ \%$
 
$r_{\rm 1T2B} \ = \ $ { 20.7 3% } $\ \%$
  
{Welche relative Redundanz besitzt das Signal&nbsp; $b(t)$, also die&nbsp; '''Kombination'''&nbsp; aus HDB3–Code und 1T2B–Code?
+
{What is the relative redundancy of the signal&nbsp; $b(t)$, i.e. the&nbsp; '''combination'''&nbsp; of HDB3 code and 1T2B code?
 
|type="{}"}
 
|type="{}"}
 
$r_{\rm HDB3+1T2B} \ = \ $ { 50 3% } $\ \%$
 
$r_{\rm HDB3+1T2B} \ = \ $ { 50 3% } $\ \%$
Line 70: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Richtig ist <u>Lösungsvorschlag 2</u>, wie ein Vergleich der Signalverläufe $c(t)$ und $b(t)$ zeigt.
+
'''(1)'''&nbsp; <u>Solution 2</u> is correct, as a comparison of the signal characteristics $c(t)$ and $b(t)$ shows.
  
  
'''(2)'''&nbsp; Die Symboldauer (Bitdauer) von $q(t)$ beträgt &nbsp; $T_{q} \hspace{0.15cm}\underline{ = 1/R_{q} = 0.488 \ \rm &micro; s}$.
+
'''(2)'''&nbsp; The symbol duration (bit duration) of $q(t)$ is &nbsp; $T_{q} \hspace{0.15cm}\underline{ = 1/R_{q} = 0.488 \ \rm &micro; s}$.
*Die Symboldauer des AMI–Codes (und des HDB3–Codes) ist genau so groß: &nbsp; $T_{c} \hspace{0.15cm}\underline{ = 0.488 \ \rm &micro; s}$.
+
*The symbol duration of the AMI code (and the HDB3 code) is exactly the same: &nbsp; $T_{c} \hspace{0.15cm}\underline{ = 0.488 \ \rm &micro; s}$.
*Dagegen ist die Symboldauer (Bitdauer) nach der 1T2B–Codierung nur halb so groß: $T_{b} = T_{c}/2 \hspace{0.15cm}\underline{= 0.244 \ \rm &micro; s}$.
+
*In contrast, the symbol duration (bit duration) after 1T2B encoding is only half as large: $T_{b} = T_{c}/2 \hspace{0.15cm}\underline{= 0.244 \ \rm &micro; s}$.
  
  
  
'''(3)'''&nbsp; Mit der angegebenen Gleichung ergibt sich mit $M_{q} = 2, M_{c} = 3$ und $T_{c} = T_{q}$:
+
'''(3)'''&nbsp; Using the given equation, with $M_{q} = 2, M_{c} = 3$ and $T_{c} = T_{q}$, we get:
 
:$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$
 
:$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Passt man die Gleichung an den 1T2B&ndash;Code an, so erhält man mit $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:
+
'''(4)'''&nbsp; Fitting the equation to the 1T2B code, we obtain with $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:
 
:$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$
 
:$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Die resultierende Redundanz beider Codes erhält man, wenn man die angegebene Gleichung auf das Eingangssignal $q(t)$ und das Ausgangssignal $c(t)$ bezieht. Mit $M_{q} = M_{b} = 2$ und $T_{b} = T_{q}/2$ folgt daraus:
+
'''(5)'''&nbsp; The resulting redundancy of both codes is obtained by relating the given equation to the input signal $q(t)$ and the output signal $c(t)$. With $M_{q} = M_{b} = 2$ and $T_{b} = T_{q}/2$ it follows:
 
:$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$
 
:$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$
Zum gleichen Ergebnis kommt man über die Rechnung
+
The same result is obtained by the calculation
 
:$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
 
:$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$

Revision as of 18:33, 30 October 2022

HDB3 and 1T2B coding

For conventional ISDN over copper lines the HDB3 code is used – see  "Exercise 1.5":

This was derived from the so-called AMI code,

  • is like the latter a pseudo-ternary code,
  • but avoids more than three consecutive  "$0$" symbols,
  • by deliberately violating the stricter AMI coding rule for longer zero sequences.


The graph shows the HDB3 encoded signal  $c(t)$ resulting from the binary redundancy-free source signal  $q(t)$.  Since there are no more than three consecutive zeros in the source signal,  $c(t)$  is identical to the AMI-encoded signal.

The broadband ISDN planned for the late 1990s was to provide data rates of up to 155 Mbit/s compared with 144 kbit/s of conventional ISDN with two B channels and one D channel. To achieve this higher data rate, it was necessary to

  • newer technology (ATM) had to be used,
  • secondly, the transmission medium had to be changed from copper to fiber optics.


However, since the HDB3-encoded signal  $c(t) ∈ \{–1, \ 0, +1\}$  cannot be transmitted by means of light, a second encoding was required. The  1T2B code  provided for this purpose replaces each ternary symbol with two binary symbols. The diagram below shows an example of the binary signal  $b(t) ∈ \{0, 1\}$, which results from the signal  $c(t)$  after this 1T2B coding.

For this exercise, assume that the bit rate of the redundancy-free source signal  $q(t)$  is equal to  $R_{q} = 2.048 \ \rm Mbit/s$.  The respective symbol durations of the signals  $q(t),  c(t)$  and  $b(t)$  are denoted by  $T_{q}$,  $T_{c}$  and  $T_{b}$. 

The equivalent bit rate of the pseudo-ternary signal  $c(t)$  is  $R_{c} = {\rm log_2}(3)/T_{c}$, from which the bit rate  $R_{q} = 1/T_{q}$  of the source signal can be used to calculate the relative redundancy of the AMI or HDB3 code:

$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$

A similar equation can be established for the 1T2B code, as well as for the two codes in combination.




Notes:


Questions

1

What is the assignment of the  1T2B code?

$c(t) = +1 \Rightarrow b(t) = 10, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 00, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 01,$
$c(t) = +1 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 00,$
$c(t) = +1 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 10.$

2

What are the symbol durations of  $q(t),  c(t)$  and  $b(t)$?

$T_{q} \ = \ $

$\ \rm µ s$
$T_{c} \ = \ $

$\ \rm µ s$
$T_{b} \ = \ $

$\ \rm µ s$

3

Calculate the relative redundancy of the  HDB3 code.

$r_{\rm HDB3} \ = \ $

$\ \%$

4

Calculate the relative redundancy of the  1T2B code.

$r_{\rm 1T2B} \ = \ $

$\ \%$

5

What is the relative redundancy of the signal  $b(t)$, i.e. the  combination  of HDB3 code and 1T2B code?

$r_{\rm HDB3+1T2B} \ = \ $

$\ \%$


Solution

(1)  Solution 2 is correct, as a comparison of the signal characteristics $c(t)$ and $b(t)$ shows.


(2)  The symbol duration (bit duration) of $q(t)$ is   $T_{q} \hspace{0.15cm}\underline{ = 1/R_{q} = 0.488 \ \rm µ s}$.

  • The symbol duration of the AMI code (and the HDB3 code) is exactly the same:   $T_{c} \hspace{0.15cm}\underline{ = 0.488 \ \rm µ s}$.
  • In contrast, the symbol duration (bit duration) after 1T2B encoding is only half as large: $T_{b} = T_{c}/2 \hspace{0.15cm}\underline{= 0.244 \ \rm µ s}$.


(3)  Using the given equation, with $M_{q} = 2, M_{c} = 3$ and $T_{c} = T_{q}$, we get:

$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$


(4)  Fitting the equation to the 1T2B code, we obtain with $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:

$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$


(5)  The resulting redundancy of both codes is obtained by relating the given equation to the input signal $q(t)$ and the output signal $c(t)$. With $M_{q} = M_{b} = 2$ and $T_{b} = T_{q}/2$ it follows:

$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$

The same result is obtained by the calculation

$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$