Difference between revisions of "Aufgaben:Exercise 1.7: Coding for Broadband ISDN"

From LNTwww
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Weiterentwicklungen von ISDN
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Further_Developments_of_ISDN
 
}}
 
}}
  
[[File:P_ID1630__Bei_A_1_7.png|right|frame|HDB3- und 1T2B-Codierung]]
+
[[File:EN_Bei_A_1_7_neu.png|right|frame|HDB3 and 1T2B coding]]
Beim herkömmlichen ISDN über Kupferleitungen wird der HDB3–Code verwendet (siehe Aufgabe A1.5). Dieser wurde vom sog. AMI–Code abgeleitet, ist wie dieser ein Pseudoternärcode, vermeidet aber mehr als drei aufeinander folgende „$0$”–Symbole, indem die strenge AMI–Codierregel bei längeren Nullfolgen bewusst verletzt wird.
+
For conventional ISDN over copper lines the  $\rm HDB3$  ("High Definition Bipolar")  code is used – see  [[Aufgaben:Exercise_1.5:_HDB3_Coding|$\text{Exercise 1.5}$]]:
  
Die Grafik zeigt das HDB3–codierte Signal $c(t)$, das sich aus dem binären redundanzfreien Quellensignal $q(t)$ ergibt. Da im Quellensignal nicht mehr als drei aufeinanderfolgende Nullen auftreten, ist $c(t)$ identisch mit dem AMI–codierten Signal.
+
This was derived from the so-called  "AMI code",
 +
 +
*is like the latter a pseudo-ternary code,
  
Das Ende der 1990–Jahre geplante Breitband–ISDN sollte Datenraten bis $155 \ \rm Mbit/s$ bereitstellen im Vergleich zu $144 \ \rm kbit/s$ des herkömmlichen ISDN mit zwei B–Kanälen und einem D–Kanal). Um diese hohe Datenrate zu erreichen, musste zum einen eine neuere Technik (ATM) verwendet werden, zum zweiten aber auch das Übertragungsmedium gewechselt werden, von der Kupferleitung zur Glasfaser.
+
*but avoids more than three consecutive  "$0$"  symbols,
  
Da das HDB3–codierte Signal $c(t) ∈ \{–1, 0, +1\}$ aber mittels Licht nicht übertragen werden kann, war eine zweite Codierung erforderlich. Der hierfür vorgesehene 1T2B–Code ersetzt jedes Ternärsymbol durch zwei Binärsymbole. Das untere Diagramm zeigt beispielhaft das Binärsignal $b(t) ∈ \{0, 1\}$, das sich nach dieser 1T2B–Codierung aus dem Signal $c(t)$ ergibt.
+
*by deliberately violating the stricter AMI coding rule for longer zero sequences.
  
Gehen Sie bei dieser Aufgabe davon aus, dass die Bitrate des redundanzfreien Quellensignals $q(t)$ gleich $R_{q} = 2.048 \ \rm Mbit/s$ beträgt. Die jeweiligen Symboldauern der Signale $q(t), c(t)$ und $b(t)$ werden mit $T_{q}, T_{c}$ und $T_{b}$ bezeichnet.
 
  
Die äquivalente Bitrate des pseudoternären Signals $c(t)$ ist $R_{c} = {\rm ld}(3)/T_{c}$, woraus mit der (echten) Bitrate $R_{q} = 1/T_{q}$ des Quellensignals die relative Redundanz des AMI– bzw. HDB3–Codes berechnet werden kann:
+
The graph shows the HDB3 encoded signal  $c(t)$  resulting from the binary redundancy-free source signal  $q(t)$.  Since there are no more than three consecutive zeros in the source signal,  $c(t)$  is identical to the AMI-encoded signal.
:$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm ld}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm ld}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$
 
Für den 1T2B–Code kann eine ähnliche Gleichung aufgestellt werden, ebenso wie für die beiden Codes in Kombination.
 
  
 +
The broadband ISDN planned for the late 1990s was to provide data rates of up to  $\text{155 Mbit/s}$  compared with  $\text{144 kbit/s}$  of conventional ISDN with two bearer channels and one data channel.  To achieve this higher data rate,  it was necessary that
 +
*newer technology  $\rm (ATM)$  had to be used,
  
''Hinweis:''
+
*secondly,  the transmission medium had to be changed from copper to fiber optics.
  
Die Aufgabe gehört zum [[Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_von_ISDN|Weiterentwicklungen von ISDN]] des vorliegenden Buches. Die Redundanz wird im [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] des Buches „Digitalsignalübertragung” definiert und an Beispielen verdeutlicht.
+
 
===Fragebogen===
+
However,  since the HDB3-encoded signal  $c(t) ∈ \{–1, \ 0, +1\}$  cannot be transmitted by means of light,  a second encoding was required. 
 +
#The  '''1T2B code'''  provided for this purpose replaces each ternary symbol with two binary symbols. 
 +
#The lower  diagram shows an example of the binary signal  $b(t) ∈ \{0, 1\}$,  which results from the signal  $c(t)$  after this 1T2B coding.
 +
#For this exercise,  assume that the bit rate of the redundancy-free source signal  $q(t)$  is equal to  $R_{q} = 2.048 \ \rm Mbit/s$. 
 +
#The respective symbol durations of the signals  $q(t),  c(t)$  and  $b(t)$  are denoted by  $T_{q}$,  $T_{c}$  and  $T_{b}$. 
 +
#The equivalent bit rate of the pseudo-ternary signal  $c(t)$  is  $R_{c} = {\rm log_2}(3)/T_{c}$,  from which the bit rate  $R_{q} = 1/T_{q}$  of the source signal can be used to calculate the relative redundancy of the AMI or HDB3 code:
 +
:$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$
 +
 
 +
A similar equation can be established for the 1T2B code,  as well as for the two codes in combination.
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
 
 +
*The exercise belongs to the chapter   [[Examples_of_Communication_Systems/Further_Developments_of_ISDN|"Further Developments of ISDN"]].
 +
 
 +
* Redundancy is defined and illustrated with examples in the chapter  [[Digital_Signal_Transmission/Basics_of_Coded_Transmission|"Basics of Coded Transmission"]]  of the book "Digital Signal Transmission".
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the assignment of the&nbsp; '''1T2B''' code?
|type="[]"}
+
|type="()"}
- Falsch
+
- $c(t) = +1 \Rightarrow b(t) = 10, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 00, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 01,$
+ Richtig
+
+ $c(t) = +1 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 00,$
 +
- $c(t) = +1 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 10.$
  
 +
{What are the symbol durations of&nbsp; $q(t), &nbsp; c(t)$&nbsp; and &nbsp; $b(t)$?
 +
|type="{}"}
 +
$T_{q} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 +
$T_{c} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 +
$T_{b} \ = \ $ { 0.244 3% } $\ \rm &micro; s$
  
{Input-Box Frage
+
{Calculate the relative redundancy of the&nbsp; '''HDB3''' code.
 
|type="{}"}
 
|type="{}"}
$ \ = \ $ { 3% } $\ \rm  $
+
$r_{\rm HDB3} \ = \ $ { 36.9 3% } $\ \%$
  
 +
{Calculate the relative redundancy of the&nbsp; '''1T2B''' code.
 +
|type="{}"}
 +
$r_{\rm 1T2B} \ = \ $ { 20.7 3% } $\ \%$
  
 +
{What is the relative redundancy of the signal&nbsp; $b(t)$, i.e. the&nbsp; '''combination'''&nbsp; of HDB3 code and 1T2B code?
 +
|type="{}"}
 +
$r_{\rm HDB3+1T2B} \ = \ $ { 50 3% } $\ \%$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; <u>Solution 2</u>&nbsp; is correct,&nbsp; as a comparison of the signal characteristics&nbsp; $c(t)$&nbsp; and&nbsp; $b(t)$&nbsp; shows.
'''(2)'''&nbsp;
+
 
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
'''(2)'''&nbsp; The symbol duration&nbsp; $(=$ bit duration$)$&nbsp; of&nbsp; $q(t)$&nbsp; is &nbsp; $T_{q} \hspace{0.15cm}\underline{ = 1/R_{q} = 0.488 \ \rm &micro; s}$.
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
*The symbol duration of the AMI code&nbsp; (and the HDB3 code)&nbsp; is exactly the same: &nbsp; $T_{c} \hspace{0.15cm}\underline{ = 0.488 \ \rm &micro; s}$.
'''(7)'''&nbsp;
+
 
 +
*In contrast,&nbsp; the symbol duration&nbsp; $(=$ bit duration$)$&nbsp; after the 1T2B encoding is only half as large:&nbsp; $T_{b} = T_{c}/2 \hspace{0.15cm}\underline{= 0.244 \ \rm &micro; s}$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Using the given equation,&nbsp; with&nbsp; $M_{q} = 2, \hspace{0.15cm} M_{c} = 3$&nbsp; and&nbsp; $T_{c} = T_{q}$,&nbsp; we get:
 +
:$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Fitting the equation to the 1T2B code,&nbsp; we obtain with&nbsp; $M_{c} = 3, \hspace{0.15cm} M_{b} = 2,&nbsp; T_{b} = T_{c}/2$:
 +
:$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; The resulting redundancy of both codes is obtained by relating the given equation to the input signal&nbsp; $q(t)$&nbsp; and the output signal&nbsp; $c(t)$.
 +
*With&nbsp; $M_{q} = M_{b} = 2$&nbsp; and&nbsp; $T_{b} = T_{q}/2$&nbsp; it follows:
 +
:$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$
 +
*The same result is obtained by the calculation
 +
:$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
 +
:$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 54: Line 106:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.4 Weiterentwicklungen von ISDN^]]
+
[[Category:Examples of Communication Systems: Exercises|^1.4 Further Developments of ISDN^]]

Latest revision as of 13:14, 10 November 2022

HDB3 and 1T2B coding

For conventional ISDN over copper lines the  $\rm HDB3$  ("High Definition Bipolar")  code is used – see  $\text{Exercise 1.5}$:

This was derived from the so-called  "AMI code",

  • is like the latter a pseudo-ternary code,
  • but avoids more than three consecutive  "$0$"  symbols,
  • by deliberately violating the stricter AMI coding rule for longer zero sequences.


The graph shows the HDB3 encoded signal  $c(t)$  resulting from the binary redundancy-free source signal  $q(t)$.  Since there are no more than three consecutive zeros in the source signal,  $c(t)$  is identical to the AMI-encoded signal.

The broadband ISDN planned for the late 1990s was to provide data rates of up to  $\text{155 Mbit/s}$  compared with  $\text{144 kbit/s}$  of conventional ISDN with two bearer channels and one data channel.  To achieve this higher data rate,  it was necessary that

  • newer technology  $\rm (ATM)$  had to be used,
  • secondly,  the transmission medium had to be changed from copper to fiber optics.


However,  since the HDB3-encoded signal  $c(t) ∈ \{–1, \ 0, +1\}$  cannot be transmitted by means of light,  a second encoding was required. 

  1. The  1T2B code  provided for this purpose replaces each ternary symbol with two binary symbols. 
  2. The lower diagram shows an example of the binary signal  $b(t) ∈ \{0, 1\}$,  which results from the signal  $c(t)$  after this 1T2B coding.
  3. For this exercise,  assume that the bit rate of the redundancy-free source signal  $q(t)$  is equal to  $R_{q} = 2.048 \ \rm Mbit/s$. 
  4. The respective symbol durations of the signals  $q(t),  c(t)$  and  $b(t)$  are denoted by  $T_{q}$,  $T_{c}$  and  $T_{b}$. 
  5. The equivalent bit rate of the pseudo-ternary signal  $c(t)$  is  $R_{c} = {\rm log_2}(3)/T_{c}$,  from which the bit rate  $R_{q} = 1/T_{q}$  of the source signal can be used to calculate the relative redundancy of the AMI or HDB3 code:
$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$

A similar equation can be established for the 1T2B code,  as well as for the two codes in combination.



Notes:


Questions

1

What is the assignment of the  1T2B code?

$c(t) = +1 \Rightarrow b(t) = 10, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 00, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 01,$
$c(t) = +1 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 00,$
$c(t) = +1 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 10.$

2

What are the symbol durations of  $q(t),   c(t)$  and   $b(t)$?

$T_{q} \ = \ $

$\ \rm µ s$
$T_{c} \ = \ $

$\ \rm µ s$
$T_{b} \ = \ $

$\ \rm µ s$

3

Calculate the relative redundancy of the  HDB3 code.

$r_{\rm HDB3} \ = \ $

$\ \%$

4

Calculate the relative redundancy of the  1T2B code.

$r_{\rm 1T2B} \ = \ $

$\ \%$

5

What is the relative redundancy of the signal  $b(t)$, i.e. the  combination  of HDB3 code and 1T2B code?

$r_{\rm HDB3+1T2B} \ = \ $

$\ \%$


Solution

(1)  Solution 2  is correct,  as a comparison of the signal characteristics  $c(t)$  and  $b(t)$  shows.


(2)  The symbol duration  $(=$ bit duration$)$  of  $q(t)$  is   $T_{q} \hspace{0.15cm}\underline{ = 1/R_{q} = 0.488 \ \rm µ s}$.

  • The symbol duration of the AMI code  (and the HDB3 code)  is exactly the same:   $T_{c} \hspace{0.15cm}\underline{ = 0.488 \ \rm µ s}$.
  • In contrast,  the symbol duration  $(=$ bit duration$)$  after the 1T2B encoding is only half as large:  $T_{b} = T_{c}/2 \hspace{0.15cm}\underline{= 0.244 \ \rm µ s}$.


(3)  Using the given equation,  with  $M_{q} = 2, \hspace{0.15cm} M_{c} = 3$  and  $T_{c} = T_{q}$,  we get:

$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$


(4)  Fitting the equation to the 1T2B code,  we obtain with  $M_{c} = 3, \hspace{0.15cm} M_{b} = 2,  T_{b} = T_{c}/2$:

$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$


(5)  The resulting redundancy of both codes is obtained by relating the given equation to the input signal  $q(t)$  and the output signal  $c(t)$.

  • With  $M_{q} = M_{b} = 2$  and  $T_{b} = T_{q}/2$  it follows:
$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$
  • The same result is obtained by the calculation
$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$