Difference between revisions of "Aufgaben:Exercise 1.7: Nearly Causal Gaussian Low-Pass Filter"

From LNTwww
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktionen}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID863__LZI_A_1_7.png|right|frame|Impulsantwort eines nahezu kausalen Gaußtiefpasses]]  
+
[[File:P_ID863__LZI_A_1_7.png|right|frame|Impulse response of a nearly causal Gaussian lowp-ass filter]]  
Messungen haben ergeben, dass ein LZI–System mit guter Näherung durch einen Gaußtiefpass angenähert werden kann, wenn man eine zusätzliche Laufzeit  $τ$  berücksichtigt. Somit lautet der Frequenzgang:
+
Measurements have shown that an LTI–system can be well approximated by a Gaussian low-pass filter if an additional runtime $τ$  is taken into account. Thus, the frequency response is:
 
:$$H(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f)^2} \cdot {\rm e}^{-{\rm
 
:$$H(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f)^2} \cdot {\rm e}^{-{\rm
 
  j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \tau}.$$
 
  j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \tau}.$$
Die beiden Systemparameter,  
+
The two system parameters,  
*die äquivalente Impulsdauer  $Δt = 1/Δf$  und
+
*the equivalent duration of the impulse $Δt = 1/Δf$  and
*die Verzögerungszeit  $τ$,  
+
*the delay time $τ$,  
  
  
können der in der Grafik dargestellten Impulsantwort  $h(t)$  entnommen werden.
+
can be taken from the impulse response  $h(t)$  shown in the graph.
  
*Es ist offensichtlich, dass dieses Modell nicht exakt der (kausalen) Wirklichkeit entspricht, da die Impulsantwort&nbsp; $h(t)$&nbsp; auch für&nbsp; $t < 0$&nbsp; nicht vollkommen verschwindet.  
+
*It is obvious that this model does not correspond exactly to the (causal) reality since the impulse response&nbsp; $h(t)$&nbsp; does not completely vanish even for&nbsp; $t < 0$&nbsp;.  
*In der Teilaufgabe&nbsp; '''(3)'''&nbsp; wird deshalb nach dem maximalen relativen Fehler gefragt, der wie folgt definiert ist:
+
*Therefore, in subtask&nbsp; '''(3)'''&nbsp; the maximum relative error is aked for and defined as follows:
 
:$$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}<
 
:$$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}<
 
  \hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$
 
  \hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$
In Worten: &nbsp; Der maximale relative Fehler &nbsp;$ε_{\rm max}$&nbsp; ist gleich dem Maximalwert der Impulsantwort &nbsp;$h(t)$&nbsp; bei negativen Zeiten, bezogen auf den maximalen Wert &nbsp;$h(t = τ)$&nbsp; der Impulsantwort.
+
In words: &nbsp; The maximum relative error&nbsp;$ε_{\rm max}$&nbsp; is equal to the maximum value of the impulse response&nbsp;$h(t)$&nbsp; at negative times with respect to the maximum value&nbsp;$h(t = τ)$&nbsp; of the impulse response.
  
  
Line 24: Line 24:
  
  
 
+
''Please note:''
''Hinweise:''
+
*The exercise belongs to the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].
+
*In particular, reference is made to the page&nbsp;  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Gaussian_low-pass_filter|Gaussian low-pass filter]].  
+
*You can use the Gaussian (error) integral to calculate step and rectangle responses:
*Bezug genommen wird insbesondere auf die Seite&nbsp;  [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Gau.C3.9F.E2.80.93Tiefpass|Gaußtiefpass]].  
 
*Zur Berechnung von Sprung– und Rechteckantwort können Sie das Gaußsche Fehlerintegral verwenden:
 
 
:$${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot
 
:$${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot
 
  \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
 
  \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
[[File:P_ID864__LZI_A_1_7b.png |center|frame|Einige Werte der Gaußschen Fehlerfunktion]]  
+
[[File:P_ID864__LZI_A_1_7b.png |center|frame|Some values of the Gaussian error function]]  
 
   
 
   
  
Line 39: Line 37:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die äquivalente Bandbreite &nbsp;$\Delta f $&nbsp; und die Laufzeit &nbsp;$\tau $?
+
{What is the equivalent bandwidth&nbsp;$\Delta f $&nbsp; and the runtime &nbsp;$\tau $?
 
|type="{}"}
 
|type="{}"}
 
$\Delta f \ = \ $ { 8 3% } $\ \rm MHz$
 
$\Delta f \ = \ $ { 8 3% } $\ \rm MHz$
Line 48: Line 46:
  
  
{Es gelte &nbsp;$x(t) = 1 \hspace{0.05cm}{\rm V} · \cos(2π · 6\ {\rm MHz }· t)$.&nbsp; Wie lautet das Ausgangssignal &nbsp;$y(t)$? &nbsp;Welcher Signalwert ergibt sich zur Zeit &nbsp;$t = 0$?
+
{It holds that &nbsp;$x(t) = 1 \hspace{0.05cm}{\rm V} · \cos(2π · 6\ {\rm MHz }· t)$.&nbsp; What is the output signal&nbsp;$y(t)$? &nbsp; What is the signal value at time&nbsp;$t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$y(t = 0) \ = \ $ { -0.175--0.165  } $\ \rm V$
 
$y(t = 0) \ = \ $ { -0.175--0.165  } $\ \rm V$
  
  
{Eigentlich sollte bei Kausalität &nbsp;$h(t < 0) = 0$&nbsp; gelten.&nbsp; Wie groß ist der maximale relative Fehler &nbsp;$\varepsilon_{\rm max}$&nbsp; des betrachteten Modells? <br>Definition von &nbsp;$\varepsilon_{\rm max}$ siehe Angabenseite.
+
{Actually, &nbsp;$h(t < 0) = 0$&nbsp; should hold due to causality.&nbsp; What is the maximum relative error&nbsp;$\varepsilon_{\rm max}$&nbsp; of the model under consideration? <br>See the definition of&nbsp;$\varepsilon_{\rm max}$ on the information page.
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_{\rm max} \ = \ $ { 3.49 5%  } $\ \cdot 10^{-6}$
 
$\varepsilon_{\rm max} \ = \ $ { 3.49 5%  } $\ \cdot 10^{-6}$
  
  
{Berechnen Sie die (dimensionslose) Sprungantwort &nbsp;$σ(t)$.&nbsp; Welche Werte ergeben sich zu den Zeiten&nbsp; $t = 250 \hspace{0.05cm} \rm ns$ &nbsp;und&nbsp; $t = 300 \hspace{0.05cm} \rm ns$?
+
{Compute the (dimensionless) step response&nbsp;$σ(t)$.&nbsp; What values arise as a result at times&nbsp; $t = 250 \hspace{0.05cm} \rm ns$ &nbsp;and&nbsp; $t = 300 \hspace{0.05cm} \rm ns$?
 
|type="{}"}
 
|type="{}"}
 
$σ(t = 250\hspace{0.05cm}  \rm ns)\ = \ $ { 0.5 5%  }
 
$σ(t = 250\hspace{0.05cm}  \rm ns)\ = \ $ { 0.5 5%  }
Line 65: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die äquivalente Bandbreite&nbsp; $Δf$&nbsp; ist gleich &nbsp;$h(t = τ) \hspace{0.05cm} \rm \underline{= \ 8 \ MHz}$.  
+
'''(1)'''&nbsp; The equivalent bandwidth&nbsp; $Δf$&nbsp; is equal to&nbsp;$h(t = τ) \hspace{0.05cm} \rm \underline{= \ 8 \ MHz}$.  
*Dies ist gleichzeitig der Kehrwert der äquivalenten Impulsdauer &nbsp;$Δt = 125 \ \rm ns$.  
+
*This is also the reciprocal of the equivalent impulse duration&nbsp;$Δt = 125 \ \rm ns$.  
*Auch die Phasenlaufzeit&nbsp; $τ \hspace{0.15cm} \rm \underline{= \ 250 \ \rm ns}$&nbsp; kann direkt aus der Grafik abgelesen werden.
+
*The phase runtime&nbsp; $τ \hspace{0.15cm} \rm \underline{= \ 250 \ \rm ns}$&nbsp; can be read directly from the graph, too.
  
  
  
'''(2)'''&nbsp; Ohne Berücksichtigung der Laufzeit ergäbe sich ein Cosinussignal mit der Amplitude
+
'''(2)'''&nbsp; Without consideration of the runtime the result would be a cosine signal with the amplitude
 
:$$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({ {6\,\rm MHz} }/{ {8\,\rm MHz} })^2}= 0.171\,{\rm V}.$$
 
:$$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({ {6\,\rm MHz} }/{ {8\,\rm MHz} })^2}= 0.171\,{\rm V}.$$
*Die Laufzeit bewirkt eine Phasenverschiebung um &nbsp;$3π$:
+
*The runtime causes a phase shift of&nbsp;$3π$:
 
:$$ y(t) =  A_y \cdot {\rm cos}(2\pi  f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi  f_0  t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) =  A_y \cdot {\rm cos}(2\pi  f_0  t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi  f_0  t ).$$
 
:$$ y(t) =  A_y \cdot {\rm cos}(2\pi  f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi  f_0  t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) =  A_y \cdot {\rm cos}(2\pi  f_0  t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi  f_0  t ).$$
*Der gesuchte Wert ist somit &nbsp;$y(t = 0) \hspace{0.05cm} \rm  \underline{= \ –0.171 \ V}$.
+
*Hence, the searched-for value is &nbsp;$y(t = 0) \hspace{0.05cm} \rm  \underline{= \ –0.171 \ V}$.
  
  
  
'''(3)'''&nbsp; Die Impulsantwort lautet:
+
'''(3)'''&nbsp; The impulse response is:
 
:$$h(t) = h_{\rm GTP}(t - \tau) =\Delta f \cdot {\rm e}^{-\pi(\frac{t - \tau}{\Delta t})^2} .$$
 
:$$h(t) = h_{\rm GTP}(t - \tau) =\Delta f \cdot {\rm e}^{-\pi(\frac{t - \tau}{\Delta t})^2} .$$
*Da &nbsp;$h(t)$&nbsp; im Bereich &nbsp;$t < 0$&nbsp; stetig zunimmt, tritt der Maximalwert (bei negativen Zeiten) etwa bei &nbsp;$t = 0$&nbsp; auf:
+
*Since&nbsp;$h(t)$&nbsp; increases steadily in the range&nbsp;$t < 0$&nbsp; the maximum value (at negative times) occurs approximately at&nbsp;$t = 0$&nbsp;:
 
:$$h(t = 0) = \Delta f \cdot {\rm e}^{-\pi(\frac{ \tau}{\Delta t})^2}= \Delta f \cdot {\rm e}^{-4\pi}  .$$
 
:$$h(t = 0) = \Delta f \cdot {\rm e}^{-\pi(\frac{ \tau}{\Delta t})^2}= \Delta f \cdot {\rm e}^{-4\pi}  .$$
*Mit &nbsp;$h(t = τ) = Δf$ erhält man so:
+
*Using &nbsp;$h(t = τ) = Δf$ the following is obtained:
 
:$$\varepsilon_{\rm max}= {\rm e}^{-4\pi}\hspace{0.15cm}\underline{ \approx 3.49} \cdot 10^{-6} .$$
 
:$$\varepsilon_{\rm max}= {\rm e}^{-4\pi}\hspace{0.15cm}\underline{ \approx 3.49} \cdot 10^{-6} .$$
  
  
  
'''(4)'''&nbsp; Wir lassen vorerst die Phasenlaufzeit &nbsp;$τ$&nbsp; des zweiten Systems außer Betracht und berechnen die Sprungantwort des Gaußtiefpasses:
+
'''(4)'''&nbsp; For the moment, we leave the phase runtime&nbsp;$τ$&nbsp; of the second system out of consideration and compute the step response of the Gaussian low-pass filter:
 
:$$\sigma_{\rm GTP}(t) =  \frac{1}{\Delta t} \cdot \int_{ -\infty }^{ t  } {{\rm e}^{-\pi \left({t\hspace{0.05cm}'}/{\Delta t}\right)^2}}  \hspace{0.1cm}{\rm d}t'.$$
 
:$$\sigma_{\rm GTP}(t) =  \frac{1}{\Delta t} \cdot \int_{ -\infty }^{ t  } {{\rm e}^{-\pi \left({t\hspace{0.05cm}'}/{\Delta t}\right)^2}}  \hspace{0.1cm}{\rm d}t'.$$
*Nach der Substitution&nbsp; $u =  t\hspace{0.05cm}' \cdot {\sqrt{2\pi}}/{\Delta t}$&nbsp; ergibt sich mit dem Gaußschen Fehlerintegral&nbsp; $ϕ(x)$:
+
*After the substitution&nbsp; $u =  t\hspace{0.05cm}' \cdot {\sqrt{2\pi}}/{\Delta t}$&nbsp; the following arises as a result with the Gaussian (error) integral&nbsp; $ϕ(x)$:
 
:$$\sigma_{\rm GTP}(t) = \frac{1}{\sqrt{2 \pi } } \cdot \int_{ -\infty }^{ \sqrt{2\pi}\cdot\hspace{0.05cm} t / \Delta t  } { {\rm e}^{-u^2/2} }  \hspace{0.1cm}{\rm d}u = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t}{\Delta t }),\hspace{1cm}
 
:$$\sigma_{\rm GTP}(t) = \frac{1}{\sqrt{2 \pi } } \cdot \int_{ -\infty }^{ \sqrt{2\pi}\cdot\hspace{0.05cm} t / \Delta t  } { {\rm e}^{-u^2/2} }  \hspace{0.1cm}{\rm d}u = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t}{\Delta t }),\hspace{1cm}
 
{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot
 
{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot
 
  \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
 
  \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
*Unter Berücksichtigung der Laufzeit &nbsp;$τ$&nbsp; erhält man somit für die gesamte Sprungantwort:
+
*Taking into account the runtime&nbsp;$τ$&nbsp; one thus obtains for the total step response:
 
:$$\sigma(t) = \sigma_{\rm GTP}(t - \tau)  = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t - \tau}{\Delta t }).$$
 
:$$\sigma(t) = \sigma_{\rm GTP}(t - \tau)  = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t - \tau}{\Delta t }).$$
*Der Wert bei &nbsp;$t = τ = 250 \ \rm ns$&nbsp; ist
+
*The value at&nbsp;$t = τ = 250 \ \rm ns$&nbsp; is
 
:$$\sigma(t = {250\,\rm ns}) = \sigma_{\rm GTP}(t = 0)  =\ \rm \underline{ϕ(0) \ = \ 0.500}.$$
 
:$$\sigma(t = {250\,\rm ns}) = \sigma_{\rm GTP}(t = 0)  =\ \rm \underline{ϕ(0) \ = \ 0.500}.$$
  
*Entsprechend erhält man für&nbsp; $t = τ = 300 \ \rm ns$:
+
*Accordingly, for&nbsp; $t = τ = 300 \ \rm ns$ the following is obtained:
 
:$$\sigma(t = {300\,\rm ns}) = \sigma_{\rm GTP}(t = {50\,\rm ns})  = {\rm \phi}(\sqrt{2\pi}\cdot \frac{ {50\,\rm ns} }{ {125\,\rm ns} })\approx {\rm \phi}(1)\hspace{0.15cm}\underline{ = 0.841}.$$
 
:$$\sigma(t = {300\,\rm ns}) = \sigma_{\rm GTP}(t = {50\,\rm ns})  = {\rm \phi}(\sqrt{2\pi}\cdot \frac{ {50\,\rm ns} }{ {125\,\rm ns} })\approx {\rm \phi}(1)\hspace{0.15cm}\underline{ = 0.841}.$$
  

Latest revision as of 14:49, 8 September 2021

Impulse response of a nearly causal Gaussian lowp-ass filter

Measurements have shown that an LTI–system can be well approximated by a Gaussian low-pass filter if an additional runtime $τ$  is taken into account. Thus, the frequency response is:

$$H(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f)^2} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f \tau}.$$

The two system parameters,

  • the equivalent duration of the impulse $Δt = 1/Δf$  and
  • the delay time $τ$,


can be taken from the impulse response  $h(t)$  shown in the graph.

  • It is obvious that this model does not correspond exactly to the (causal) reality since the impulse response  $h(t)$  does not completely vanish even for  $t < 0$ .
  • Therefore, in subtask  (3)  the maximum relative error is aked for and defined as follows:
$$\varepsilon_{\rm max} = \frac{\max_{t \hspace{0.02cm}< \hspace{0.1cm}0}|h(t)|}{h(t = \tau)}.$$

In words:   The maximum relative error $ε_{\rm max}$  is equal to the maximum value of the impulse response $h(t)$  at negative times with respect to the maximum value $h(t = τ)$  of the impulse response.




Please note:

$${\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$
Some values of the Gaussian error function




Questions

1

What is the equivalent bandwidth $\Delta f $  and the runtime  $\tau $?

$\Delta f \ = \ $

$\ \rm MHz$
$\tau \ = \ $

$\ \rm ns$

2

It holds that  $x(t) = 1 \hspace{0.05cm}{\rm V} · \cos(2π · 6\ {\rm MHz }· t)$.  What is the output signal $y(t)$?   What is the signal value at time $t = 0$?

$y(t = 0) \ = \ $

$\ \rm V$

3

Actually,  $h(t < 0) = 0$  should hold due to causality.  What is the maximum relative error $\varepsilon_{\rm max}$  of the model under consideration?
See the definition of $\varepsilon_{\rm max}$ on the information page.

$\varepsilon_{\rm max} \ = \ $

$\ \cdot 10^{-6}$

4

Compute the (dimensionless) step response $σ(t)$.  What values arise as a result at times  $t = 250 \hspace{0.05cm} \rm ns$  and  $t = 300 \hspace{0.05cm} \rm ns$?

$σ(t = 250\hspace{0.05cm} \rm ns)\ = \ $

$σ(t = 300\hspace{0.05cm} \rm ns) \ = \ $


Solution

(1)  The equivalent bandwidth  $Δf$  is equal to $h(t = τ) \hspace{0.05cm} \rm \underline{= \ 8 \ MHz}$.

  • This is also the reciprocal of the equivalent impulse duration $Δt = 125 \ \rm ns$.
  • The phase runtime  $τ \hspace{0.15cm} \rm \underline{= \ 250 \ \rm ns}$  can be read directly from the graph, too.


(2)  Without consideration of the runtime the result would be a cosine signal with the amplitude

$$A_y = 1\,{\rm V} \cdot {\rm e}^{-\pi({ {6\,\rm MHz} }/{ {8\,\rm MHz} })^2}= 0.171\,{\rm V}.$$
  • The runtime causes a phase shift of $3π$:
$$ y(t) = A_y \cdot {\rm cos}(2\pi f_0 ( t - \tau) ) = A_y \cdot {\rm cos}(2\pi f_0 t - 2\pi \cdot {6\,\rm MHz}\cdot {250\,\rm ns} ) = A_y \cdot {\rm cos}(2\pi f_0 t - 3\pi ) = -A_y \cdot {\rm cos}(2\pi f_0 t ).$$
  • Hence, the searched-for value is  $y(t = 0) \hspace{0.05cm} \rm \underline{= \ –0.171 \ V}$.


(3)  The impulse response is:

$$h(t) = h_{\rm GTP}(t - \tau) =\Delta f \cdot {\rm e}^{-\pi(\frac{t - \tau}{\Delta t})^2} .$$
  • Since $h(t)$  increases steadily in the range $t < 0$  the maximum value (at negative times) occurs approximately at $t = 0$ :
$$h(t = 0) = \Delta f \cdot {\rm e}^{-\pi(\frac{ \tau}{\Delta t})^2}= \Delta f \cdot {\rm e}^{-4\pi} .$$
  • Using  $h(t = τ) = Δf$ the following is obtained:
$$\varepsilon_{\rm max}= {\rm e}^{-4\pi}\hspace{0.15cm}\underline{ \approx 3.49} \cdot 10^{-6} .$$


(4)  For the moment, we leave the phase runtime $τ$  of the second system out of consideration and compute the step response of the Gaussian low-pass filter:

$$\sigma_{\rm GTP}(t) = \frac{1}{\Delta t} \cdot \int_{ -\infty }^{ t } {{\rm e}^{-\pi \left({t\hspace{0.05cm}'}/{\Delta t}\right)^2}} \hspace{0.1cm}{\rm d}t'.$$
  • After the substitution  $u = t\hspace{0.05cm}' \cdot {\sqrt{2\pi}}/{\Delta t}$  the following arises as a result with the Gaussian (error) integral  $ϕ(x)$:
$$\sigma_{\rm GTP}(t) = \frac{1}{\sqrt{2 \pi } } \cdot \int_{ -\infty }^{ \sqrt{2\pi}\cdot\hspace{0.05cm} t / \Delta t } { {\rm e}^{-u^2/2} } \hspace{0.1cm}{\rm d}u = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t}{\Delta t }),\hspace{1cm} {\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$
  • Taking into account the runtime $τ$  one thus obtains for the total step response:
$$\sigma(t) = \sigma_{\rm GTP}(t - \tau) = {\rm \phi}(\sqrt{2\pi}\cdot \frac{t - \tau}{\Delta t }).$$
  • The value at $t = τ = 250 \ \rm ns$  is
$$\sigma(t = {250\,\rm ns}) = \sigma_{\rm GTP}(t = 0) =\ \rm \underline{ϕ(0) \ = \ 0.500}.$$
  • Accordingly, for  $t = τ = 300 \ \rm ns$ the following is obtained:
$$\sigma(t = {300\,\rm ns}) = \sigma_{\rm GTP}(t = {50\,\rm ns}) = {\rm \phi}(\sqrt{2\pi}\cdot \frac{ {50\,\rm ns} }{ {125\,\rm ns} })\approx {\rm \phi}(1)\hspace{0.15cm}\underline{ = 0.841}.$$