Difference between revisions of "Aufgaben:Exercise 1.8Z: Cosine-Square Low-Pass Filter"

From LNTwww
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige systemtheoretische Tiefpassfunktion
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
}}
 
  
[[File:P_ID868__LZI_Z_1_8.png|right|frame|Zum Cosinus–Quadrat–Tiefpass]]
+
[[File:P_ID868__LZI_Z_1_8.png|right|frame|Concerning the cosine-square low-pass filter]]
Bei der Untersuchung von Digitalsystemen geht man häufig von einem diracförmigen Eingangssignal  $x(t) = T \cdot \delta(t)$  aus, so dass  $X(f) = T$  gilt.  
+
When studying digital systems a dirac-shaped input signal $x(t) = T \cdot \delta(t)$  is often assumed such that  $X(f) = T$  holds.  
  
Das Ausgangsspektrum  $Y(f)$  ist dann formgleich mit dem Gesamtfrequenzgang von Sende– und Empfangsfilter:
+
The output spectrum $Y(f)$  is then of equal form compared with the overall frequency response of the transmitter and receiver filter:
 
:$$H(f)  = H_{\rm S}(f) \cdot H_{\rm E}(f).$$
 
:$$H(f)  = H_{\rm S}(f) \cdot H_{\rm E}(f).$$
  
Dieser Frequenzgang wird häufig als  $\cos^2$-förmig angenommen (siehe Grafik):
+
This frequency response is often assumed to be  $\cos^2$-shaped (see graph):
* Für  $f \cdot T \ge 1$  ist  $H(f) = 0$.  
+
*For  $f \cdot T \ge 1$ ,  $H(f) = 0$ holds.  
*Im inneren Bereich gilt  $H(f)  = \cos^2(f \cdot T \cdot {\pi}/{ 2}  ) .$
+
*In the inner region the following holds:  $H(f)  = \cos^2(f \cdot T \cdot {\pi}/{ 2}  ) .$
  
  
Anzumerken ist, dass die äquivalente Bandbreite  $\Delta f = 1/{\Delta t}$  ist. Damit erhält man für die äquivalente  ${\Delta t}$  der Impulsantwort ebenfalls  $T$  und und es gilt:
+
Note that the equivalent bandwidth is $\Delta f = 1/{\Delta t}$ . Thus, for the equivalent ${\Delta t}$  of the impulse response one also obtains  $T$  and the following holds:
 
:$$y(t) = T \cdot h(t) = {\rm si}(\pi \cdot {t}/{T} )\cdot \frac
 
:$$y(t) = T \cdot h(t) = {\rm si}(\pi \cdot {t}/{T} )\cdot \frac
 
{\cos(\pi \cdot  t / T  )}{1 - (2 \cdot  t/T )^2}.$$
 
{\cos(\pi \cdot  t / T  )}{1 - (2 \cdot  t/T )^2}.$$
  
Zu beachten ist, dass das Ausgangssignal  $y(t)$  im Gegensatz zur Impulsantwort  $h(t)$  ohne Einheit ist. Durch Anwendung trigonomischer Umformungen kann dieses Signal auch wie folgt dargestellt werden:
+
Also, note that the output signal $y(t)$  is dimensionless in cotrast to the impulse response  $h(t)$ . This signal can also be represented as follows by applying trigonomic transformations:
 
:$$y(t) = {\pi}/{4} \cdot {\rm si}(\pi \cdot {t}/{T} )\cdot
 
:$$y(t) = {\pi}/{4} \cdot {\rm si}(\pi \cdot {t}/{T} )\cdot
 
\big[ {\rm si}\big(\pi \cdot \left({t}/{T}+ 0.5 \right)
 
\big[ {\rm si}\big(\pi \cdot \left({t}/{T}+ 0.5 \right)
Line 24: Line 23:
 
\big)\big].$$
 
\big)\big].$$
  
Wählen Sie bei den folgenden Aufgaben die jeweils einfacher handhabbare Gleichung aus.
+
For each of the following tasks select the equation that is easier to handle.
  
Für die Teilaufgabe  '''(3)'''  soll vorausgesetzt werden, dass das Signal   $s(t)$  in der Mitte zwischen den beiden Frequenzgängen  $H_{\rm S}(f)$  und  $H_{\rm S}(f)$  ein Rechteckimpuls ist. Demzufolge muss gelten:
+
For subtask  '''(3)'''  it shall be assumed that the signal $s(t)$  is a rectangular pulse in the middle between the two frequency responses $H_{\rm S}(f)$  and  $H_{\rm S}(f)$ . Consequently, it must hold:
 
:$$H_{\rm E}(f)  = {\rm  si }(\pi f T  ) .$$
 
:$$H_{\rm E}(f)  = {\rm  si }(\pi f T  ) .$$
  
Line 36: Line 35:
  
  
''Hinweise:''  
+
''Please note:''  
*Die Aufgabe gehört zum  Kapitel  [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].   
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].   
*Bezug genommen wird insbesondere auf die Seite   [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff–Tiefpass]].  
+
*In particular, reference is made to the page   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Cosine–square_low-pass_filter|Cosine–square low-pass filter]].  
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang und Impulsantwort]]  überprüfen.
+
*You can check your results with the interactive applet [[Applets:Frequenzgang_und_Impulsantwort|Frequency response and impulse response]]. 
 
   
 
   
  
Line 45: Line 44:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Ausgangssignal zu den Zeitpunkten &nbsp;$t = 0$&nbsp; und &nbsp;$t = T$.
+
{Compute the output signal at times&nbsp;$t = 0$&nbsp; and &nbsp;$t = T$.
 
|type="{}"}
 
|type="{}"}
 
$y(t = 0)  \ = \ $ { 1 1% }
 
$y(t = 0)  \ = \ $ { 1 1% }
Line 54: Line 53:
  
  
{Berechnen Sie das Ausgangssignal zu den Zeitpunkten &nbsp;$t = 0.5 T$&nbsp; und &nbsp;$t = 1.5 T$.
+
{Compute the output signal at times&nbsp;$t = 0.5 T$&nbsp; and &nbsp;$t = 1.5 T$.
 
|type="{}"}
 
|type="{}"}
 
$y(t = 0.5 T)  \ = \ $  { 0.5 1% }
 
$y(t = 0.5 T)  \ = \ $  { 0.5 1% }
Line 60: Line 59:
  
  
{Berechnen Sie &nbsp;$y(t)$&nbsp; für große &nbsp;$t$-Werte. Geeignete Näherungen sind erlaubt und erwünscht.&nbsp; Wie groß ist der Signalwert bei &nbsp;$t = 10.75 T$?
+
{Compute&nbsp;$y(t)$&nbsp; for large&nbsp;$t$-values. Suitable approximations are allowed and encouraged.&nbsp; What is the signal value at&nbsp;$t = 10.75 T$?
 
|type="{}"}
 
|type="{}"}
 
$y(t = 10.75 T) \ = \ $  { 32 1% } $ \ \cdot \ 10^{-6}$
 
$y(t = 10.75 T) \ = \ $  { 32 1% } $ \ \cdot \ 10^{-6}$
  
  
{Geben Sie den erforderlichen Empfängerfrequenzgang &nbsp;$H_{\rm E}(f)$&nbsp; für &nbsp;$H_{\rm S}(f)= {\rm si}(&pi;fT)$&nbsp; an.&nbsp; Welche Werte ergeben sich für die angegebenen Frequenzen?
+
{State the required receiver frequency response&nbsp;$H_{\rm E}(f)$&nbsp; for &nbsp;$H_{\rm S}(f)= {\rm si}(&pi;fT)$&nbsp;.&nbsp; What are the values for the given frequencies?
 
|type="{}"}
 
|type="{}"}
 
$H_{\rm E}(f=0) \ = \ $  { 1 1% }
 
$H_{\rm E}(f=0) \ = \ $  { 1 1% }
Line 75: Line 74:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der ersten Gleichung auf der Angabenseite folgt aufgrund der &nbsp;$\rm si$&ndash;Funktion direkt &nbsp;$y(t = 0) = 1$&nbsp; und &nbsp;$y(t = T) = y(t = 2T) = \text{...} =0$.  
+
'''(1)'''&nbsp; From the first equation on the information page it directly follows that &nbsp;$y(t = 0) = 1$&nbsp; and &nbsp;$y(t = T) = y(t = 2T) = \text{...} =0$ due to the&nbsp;$\rm si$&ndash;function.  
  
*Auch aus der zweiten Gleichung erhält man diese Ergebnisse, beispielsweise
+
*From the second equation these results are obtained, for example
 
:$$y(t = 0) = {\pi}/{4} \cdot {\rm si}(0)\cdot \left[ {\rm
 
:$$y(t = 0) = {\pi}/{4} \cdot {\rm si}(0)\cdot \left[ {\rm
 
si}(\pi/2)+ {\rm si}(-\pi/2)\right]   
 
si}(\pi/2)+ {\rm si}(-\pi/2)\right]   
Line 88: Line 87:
  
  
[[File:EN_LZI_Z_1_8_b.png|right|frame|Ausgangssignal des Cosinus–Quadrat–Tiefpasses]]
+
[[File:EN_LZI_Z_1_8_b.png|right|frame|Output signal of the cosine-square low-pass filter]]
'''(2)'''&nbsp; Zur Berechnung dieser Signalwerte ist die zweite Darstellung besser geeignet:
+
'''(2)'''&nbsp; The second representation is more suitable for the computation of these signal values:
  
 
:$$y(t = T/2) =  {\pi}/{4}  \cdot {\rm si}(\pi/2)\cdot \big[ {\rm
 
:$$y(t = T/2) =  {\pi}/{4}  \cdot {\rm si}(\pi/2)\cdot \big[ {\rm
 
si}(\pi)+ {\rm si}(0)\big].$$
 
si}(\pi)+ {\rm si}(0)\big].$$
  
*Mit&nbsp; ${\rm si}(0) = 1$&nbsp; und&nbsp; ${\rm si}(\pi) = 0$&nbsp; erhält man so:
+
*Considering&nbsp; ${\rm si}(0) = 1$&nbsp; and&nbsp; ${\rm si}(\pi) = 0$&nbsp; one obtains thus:
 
:$$y(t = T/2) =  {\pi}/{4}  \cdot {\rm si}(\pi/2)= {\pi}/{4}  
 
:$$y(t = T/2) =  {\pi}/{4}  \cdot {\rm si}(\pi/2)= {\pi}/{4}  
 
\cdot \frac{{\rm sin}(\pi/2)}{\pi/2} \hspace{0.15cm}\underline{ = 0.5}.$$
 
\cdot \frac{{\rm sin}(\pi/2)}{\pi/2} \hspace{0.15cm}\underline{ = 0.5}.$$
  
*In analoger Weise ergibt sich für&nbsp; $t = 1.5T$:
+
*Analogously, the following is obtained for&nbsp; $t = 1.5T$:
 
:$$y(t = 1.5T) =  {\pi}/{4}  \cdot {\rm si}(3\pi/2)\cdot \left[
 
:$$y(t = 1.5T) =  {\pi}/{4}  \cdot {\rm si}(3\pi/2)\cdot \left[
 
{\rm si}(2\pi)+ {\rm si}(\pi)\right] \hspace{0.15cm}\underline{ = 0}.$$
 
{\rm si}(2\pi)+ {\rm si}(\pi)\right] \hspace{0.15cm}\underline{ = 0}.$$
  
*Hierbei ist&nbsp; ${\rm si}(\pi) = {\rm si}(2\pi) = 0$&nbsp; berücksichtigt.  
+
*Here, &nbsp; ${\rm si}(\pi) = {\rm si}(2\pi) = 0$&nbsp; is considered.  
*Auch zu den Zeiten&nbsp; $t/T = 2.5, 3.5,\text{ ... }$&nbsp; gilt&nbsp; $y(t) = 0$, wie obige Grafik zeigt.
+
*Also, at times&nbsp; $t/T = 2.5, 3.5,\text{ ... }$&nbsp;, &nbsp; $y(t) = 0$ holds as shown in the above graph.
  
  
  
'''(3)'''&nbsp; Für große Werte von&nbsp; $t$&nbsp; gilt näherungsweise&nbsp; (wenn man die "1" im Nenner vernachlässigt):
+
'''(3)'''&nbsp; For large values of&nbsp; $t$&nbsp; the following holds by approximation&nbsp; (neglecting the "1" in the denominator):
 
:$$y(t)= {\rm si}(\pi \cdot {t}/{T} )\cdot \frac
 
:$$y(t)= {\rm si}(\pi \cdot {t}/{T} )\cdot \frac
 
{\cos(\pi \cdot  t / T  )}{1 - (2 \cdot  t/T )^2} \approx  \frac {\sin(\pi \cdot  t / T  )\cdot \cos(\pi \cdot  t / T
 
{\cos(\pi \cdot  t / T  )}{1 - (2 \cdot  t/T )^2} \approx  \frac {\sin(\pi \cdot  t / T  )\cdot \cos(\pi \cdot  t / T
Line 113: Line 112:
 
\cdot  t / T  )}{ 8 \pi \cdot( t/T )^3}.$$
 
\cdot  t / T  )}{ 8 \pi \cdot( t/T )^3}.$$
  
*Hierbei ist berücksichtigt, dass &nbsp;$\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$&nbsp; ist.  
+
*This takes into account that&nbsp;$\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$&nbsp;.  
*Zum Zeitpunkt &nbsp;$t = 10.75 T$&nbsp; gilt dann:
+
*Hence at time&nbsp;$t = 10.75 T$&nbsp; it holds that:
 
:$$\sin(2\pi \cdot  t / T  ) = \sin (21.5\pi)= \sin (1.5\pi) = -1\hspace{0.3cm}  
 
:$$\sin(2\pi \cdot  t / T  ) = \sin (21.5\pi)= \sin (1.5\pi) = -1\hspace{0.3cm}  
 
\Rightarrow  \hspace{0.3cm} y(t = 10.75 T) =    \frac {1 }{ 8 \pi \cdot( 10.75 )^3}  \hspace{0.15cm}\underline{= 32
 
\Rightarrow  \hspace{0.3cm} y(t = 10.75 T) =    \frac {1 }{ 8 \pi \cdot( 10.75 )^3}  \hspace{0.15cm}\underline{= 32
Line 120: Line 119:
  
  
[[File:P_ID872__LZI_Z_1_8_d.png|right|frame|Gesuchter Empfängerfrequenzgang]]
+
[[File:P_ID872__LZI_Z_1_8_d.png|right|frame|Searched-for receiver frequency response]]
'''(4)'''&nbsp; Der Empfängerfrequenzgang lautet für&nbsp; $|f \cdot T| \le 1$:
+
'''(4)'''&nbsp; The receiver frequency response is the following for&nbsp; $|f \cdot T| \le 1$:
 
:$$H_{\rm E}(f)  = \frac{H(f)}{H_{\rm S}(f)}= \frac{\cos^2(\pi f T
 
:$$H_{\rm E}(f)  = \frac{H(f)}{H_{\rm S}(f)}= \frac{\cos^2(\pi f T
 
  /2)}{{\rm si}(\pi fT)}.$$
 
  /2)}{{\rm si}(\pi fT)}.$$
*Dieser Funktionsverlauf ist in der Grafik dargestellt. Für die gesuchten Stützwerte gilt:
+
*This function curve is shown in the graph. The following holds or the interpolation values:
 
:$$H_{\rm E}(f = 0)  = \frac{\cos^2(0)}{{\rm si}(0)} \hspace{0.15cm}\underline{ = 1},$$
 
:$$H_{\rm E}(f = 0)  = \frac{\cos^2(0)}{{\rm si}(0)} \hspace{0.15cm}\underline{ = 1},$$
 
:$$H_{\rm E}(f = {0.5}/T  \hspace{-0.15cm}  =  \hspace{-0.15cm} \frac{\cos^2(\pi/4)}{{\rm si}(\pi/2)}= (\sqrt{2} / 2)^2 \cdot \frac{\pi}{2}   
 
:$$H_{\rm E}(f = {0.5}/T  \hspace{-0.15cm}  =  \hspace{-0.15cm} \frac{\cos^2(\pi/4)}{{\rm si}(\pi/2)}= (\sqrt{2} / 2)^2 \cdot \frac{\pi}{2}   
Line 130: Line 129:
 
:$$H_{\rm E}(f = {1}/{T})  = \frac{\cos^2(\pi/2)}{{\rm si}(\pi)} = "0/0"\hspace{0.15cm}\underline{= 0}.$$
 
:$$H_{\rm E}(f = {1}/{T})  = \frac{\cos^2(\pi/2)}{{\rm si}(\pi)} = "0/0"\hspace{0.15cm}\underline{= 0}.$$
  
Bei diesem Ergebnis ist berücksichtigt, dass im gesamten Frequenzbereich&nbsp; $H_{\rm S}(f) \ge  H(f) $&nbsp; gilt. Eigentlich müsste der zuletzt berechnete Wert durch einen Grenzübergang mathematisch-exakt bestimmt werden. Das haben wir auch gemacht, nur nicht in dieser Musterlösung.
+
This result takes into account that in the whole frequency domain&nbsp; $H_{\rm S}(f) \ge  H(f) $&nbsp; holds. Actually, the last calculated value should be determined by a limiting process in a mathematically exact way. We did that too, but not in this sample solution.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 20:43, 9 September 2021

Concerning the cosine-square low-pass filter

When studying digital systems a dirac-shaped input signal $x(t) = T \cdot \delta(t)$  is often assumed such that  $X(f) = T$  holds.

The output spectrum $Y(f)$  is then of equal form compared with the overall frequency response of the transmitter and receiver filter:

$$H(f) = H_{\rm S}(f) \cdot H_{\rm E}(f).$$

This frequency response is often assumed to be  $\cos^2$-shaped (see graph):

  • For  $f \cdot T \ge 1$ ,  $H(f) = 0$ holds.
  • In the inner region the following holds:  $H(f) = \cos^2(f \cdot T \cdot {\pi}/{ 2} ) .$


Note that the equivalent bandwidth is $\Delta f = 1/{\Delta t}$ . Thus, for the equivalent ${\Delta t}$  of the impulse response one also obtains  $T$  and the following holds:

$$y(t) = T \cdot h(t) = {\rm si}(\pi \cdot {t}/{T} )\cdot \frac {\cos(\pi \cdot t / T )}{1 - (2 \cdot t/T )^2}.$$

Also, note that the output signal $y(t)$  is dimensionless in cotrast to the impulse response  $h(t)$ . This signal can also be represented as follows by applying trigonomic transformations:

$$y(t) = {\pi}/{4} \cdot {\rm si}(\pi \cdot {t}/{T} )\cdot \big[ {\rm si}\big(\pi \cdot \left({t}/{T}+ 0.5 \right) \big)+ {\rm si}\big(\pi \cdot \left({t}/{T}- 0.5 \right) \big)\big].$$

For each of the following tasks select the equation that is easier to handle.

For subtask  (3)  it shall be assumed that the signal $s(t)$  is a rectangular pulse in the middle between the two frequency responses $H_{\rm S}(f)$  and  $H_{\rm S}(f)$ . Consequently, it must hold:

$$H_{\rm E}(f) = {\rm si }(\pi f T ) .$$





Please note:



Questions

1

Compute the output signal at times $t = 0$  and  $t = T$.

$y(t = 0) \ = \ $

$y(t = T) \ = \ $

2

Compute the output signal at times $t = 0.5 T$  and  $t = 1.5 T$.

$y(t = 0.5 T) \ = \ $

$y(t = 1.5 T) \ = \ $

3

Compute $y(t)$  for large $t$-values. Suitable approximations are allowed and encouraged.  What is the signal value at $t = 10.75 T$?

$y(t = 10.75 T) \ = \ $

$ \ \cdot \ 10^{-6}$

4

State the required receiver frequency response $H_{\rm E}(f)$  for  $H_{\rm S}(f)= {\rm si}(πfT)$ .  What are the values for the given frequencies?

$H_{\rm E}(f=0) \ = \ $

$H_{\rm E}(f=0.5/T) \ = \ $

$H_{\rm E}(f=1/T) \ = \ $


Solution

(1)  From the first equation on the information page it directly follows that  $y(t = 0) = 1$  and  $y(t = T) = y(t = 2T) = \text{...} =0$ due to the $\rm si$–function.

  • From the second equation these results are obtained, for example
$$y(t = 0) = {\pi}/{4} \cdot {\rm si}(0)\cdot \left[ {\rm si}(\pi/2)+ {\rm si}(-\pi/2)\right] {\pi}/{2} \cdot {\rm si}(\pi/2) = {\pi}/{2} \cdot \frac{{\rm sin}(\pi/2)}{\pi/2} \hspace{0.15cm}\underline{= 1},$$
$$y(t = T) \hspace{0.15cm}=\hspace{0.15cm}{\pi}/{4} \cdot {\rm si}(\pi)\cdot \left[ {\rm si}(3\pi/2)+ {\rm si}(\pi/2)\right] \hspace{0.15cm}\underline{= 0}.$$


Output signal of the cosine-square low-pass filter

(2)  The second representation is more suitable for the computation of these signal values:

$$y(t = T/2) = {\pi}/{4} \cdot {\rm si}(\pi/2)\cdot \big[ {\rm si}(\pi)+ {\rm si}(0)\big].$$
  • Considering  ${\rm si}(0) = 1$  and  ${\rm si}(\pi) = 0$  one obtains thus:
$$y(t = T/2) = {\pi}/{4} \cdot {\rm si}(\pi/2)= {\pi}/{4} \cdot \frac{{\rm sin}(\pi/2)}{\pi/2} \hspace{0.15cm}\underline{ = 0.5}.$$
  • Analogously, the following is obtained for  $t = 1.5T$:
$$y(t = 1.5T) = {\pi}/{4} \cdot {\rm si}(3\pi/2)\cdot \left[ {\rm si}(2\pi)+ {\rm si}(\pi)\right] \hspace{0.15cm}\underline{ = 0}.$$
  • Here,   ${\rm si}(\pi) = {\rm si}(2\pi) = 0$  is considered.
  • Also, at times  $t/T = 2.5, 3.5,\text{ ... }$ ,   $y(t) = 0$ holds as shown in the above graph.


(3)  For large values of  $t$  the following holds by approximation  (neglecting the "1" in the denominator):

$$y(t)= {\rm si}(\pi \cdot {t}/{T} )\cdot \frac {\cos(\pi \cdot t / T )}{1 - (2 \cdot t/T )^2} \approx \frac {\sin(\pi \cdot t / T )\cdot \cos(\pi \cdot t / T )}{ - (\pi \cdot t/T )(2 \cdot t/T )^2} = - \frac {\sin(2\pi \cdot t / T )}{ 8 \pi \cdot( t/T )^3}.$$
  • This takes into account that $\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$ .
  • Hence at time $t = 10.75 T$  it holds that:
$$\sin(2\pi \cdot t / T ) = \sin (21.5\pi)= \sin (1.5\pi) = -1\hspace{0.3cm} \Rightarrow \hspace{0.3cm} y(t = 10.75 T) = \frac {1 }{ 8 \pi \cdot( 10.75 )^3} \hspace{0.15cm}\underline{= 32 \cdot 10^{-6}}.$$


Searched-for receiver frequency response

(4)  The receiver frequency response is the following for  $|f \cdot T| \le 1$:

$$H_{\rm E}(f) = \frac{H(f)}{H_{\rm S}(f)}= \frac{\cos^2(\pi f T /2)}{{\rm si}(\pi fT)}.$$
  • This function curve is shown in the graph. The following holds or the interpolation values:
$$H_{\rm E}(f = 0) = \frac{\cos^2(0)}{{\rm si}(0)} \hspace{0.15cm}\underline{ = 1},$$
$$H_{\rm E}(f = {0.5}/T \hspace{-0.15cm} = \hspace{-0.15cm} \frac{\cos^2(\pi/4)}{{\rm si}(\pi/2)}= (\sqrt{2} / 2)^2 \cdot \frac{\pi}{2} = \hspace{-0.15cm} \frac{\pi}{4}\hspace{0.15cm}\underline{ \approx 0.785},$$
$$H_{\rm E}(f = {1}/{T}) = \frac{\cos^2(\pi/2)}{{\rm si}(\pi)} = "0/0"\hspace{0.15cm}\underline{= 0}.$$

This result takes into account that in the whole frequency domain  $H_{\rm S}(f) \ge H(f) $  holds. Actually, the last calculated value should be determined by a limiting process in a mathematically exact way. We did that too, but not in this sample solution.