Difference between revisions of "Aufgaben:Exercise 2.07Z: Reed-Solomon Code (15, 5, 11) to Base 16"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
[[File: P_ID2534__KC_Z_2_7.png|right|frame|$\rm GF(2^4)$  in Potenzen–, Polynom- und Koeffizientendarstellung]]
+
[[File: P_ID2534__KC_Z_2_7.png|right|frame|$\rm GF(2^4)$  in power, polynomial and coefficient notation]]
Die vorliegende Aufgabenstellung ist ähnlich wie diejenige bei der  [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|Aufgabe 2.7]]. Wir beziehen uns hier aber nun auf das Galoisfeld  $\rm GF(2^4)$, dessen Elemente nebenstehend sowohl in Potenzen– und Polynomdarstellung als auch durch den Koeffizientenvektor angegeben sind. Weiter gilt in  $\rm GF(2^4)$:
+
The task at hand is similar to the one in  [[Aufgaben:Exercise_2.07:_Reed-Solomon_Code_(7,_3,_5)_to_Base_8|"Exercise 2.7"]]. However, we now refer here to the Galois field  $\rm GF(2^4)$, whose elements are given opposite both in powers and polynomial representations and by the coefficient vector. Further, in  $\rm GF(2^4)$:
 
:$$\alpha^{16} = \alpha^{1}\hspace{0.05cm},\hspace{0.2cm}  \alpha^{17} = \alpha^{2}\hspace{0.05cm},\hspace{0.2cm}  
 
:$$\alpha^{16} = \alpha^{1}\hspace{0.05cm},\hspace{0.2cm}  \alpha^{17} = \alpha^{2}\hspace{0.05cm},\hspace{0.2cm}  
 
  \alpha^{18} = \alpha^{3}\hspace{0.05cm},\hspace{0.05cm}\text{...} $$
 
  \alpha^{18} = \alpha^{3}\hspace{0.05cm},\hspace{0.05cm}\text{...} $$
  
Zur Codierung des Informationsblockes der Länge  $k = 5$,  
+
To encode the information block of length  $k = 5$,  
 
:$$\underline{u} = (u_0,\ u_1,\ u_2,\ u_3,\ u_4)\hspace{0.05cm},$$
 
:$$\underline{u} = (u_0,\ u_1,\ u_2,\ u_3,\ u_4)\hspace{0.05cm},$$
  
bilden wir das Polynom
+
we form the polynomial
 
:$$u(x) =  u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 + u_4 \cdot x^4 $$
 
:$$u(x) =  u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 + u_4 \cdot x^4 $$
  
mit  $u_0, \hspace{0.05cm}\text{...} \hspace{0.1cm} , u_4 ∈ \rm GF(2^4)$.  
+
with  $u_0, \hspace{0.05cm}\text{...} \hspace{0.1cm} , u_4 ∈ \rm GF(2^4)$.  
  
Die  $n = 15$  Codeworte ergeben sich dann, wenn man in  $u(x)$  die Elemente von  $\rm GF(2^4) \ \backslash \ \{0\}$  einsetzt:
+
The  $n = 15$  codewords are then obtained by substituting into  $u(x)$  the elements of  $\rm GF(2^4) \ \backslash \ \{0\}$ :
 
:$$c_0 = u(\alpha^{0})\hspace{0.05cm},\hspace{0.2cm}  c_1 = u(\alpha^{1})\hspace{0.05cm},
 
:$$c_0 = u(\alpha^{0})\hspace{0.05cm},\hspace{0.2cm}  c_1 = u(\alpha^{1})\hspace{0.05cm},
 
\hspace{0.2cm}  c_2 = u(\alpha^{2})\hspace{0.05cm},
 
\hspace{0.2cm}  c_2 = u(\alpha^{2})\hspace{0.05cm},
Line 26: Line 26:
  
  
''Hinweis:''
+
Hints:
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
+
* This exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
 
   
 
   
  
Line 33: Line 33:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Symbolfehler können korrigiert werden?
+
{How many symbol errors can be corrected?
 
|type="{}"}
 
|type="{}"}
 
$t \ = \ $ { 5 }
 
$t \ = \ $ { 5 }
  
{Wie lautet das Polynom&nbsp; $u(x)$&nbsp; für&nbsp; $\underline{u} = (\alpha^3, \, 0, \, 0, \, 1, \, \alpha^{10})$?
+
{What is the polynomial&nbsp; $u(x)$&nbsp; for&nbsp; $\underline{u} = (\alpha^3, \, 0, \, 0, \, 1, \, \alpha^{10})$?
 
|type="()"}
 
|type="()"}
 
- $u(x) = \alpha^3 + x + \alpha^{10} \cdot x^2$,
 
- $u(x) = \alpha^3 + x + \alpha^{10} \cdot x^2$,
Line 45: Line 45:
 
- $u(x) = 1 + x + x^2 + x^3 + x^4$.
 
- $u(x) = 1 + x + x^2 + x^3 + x^4$.
  
{Wie lautet das Symbol&nbsp; $c_0$&nbsp; des zugehörigen Codewortes&nbsp; $\underline{c}$?
+
{What is the symbol&nbsp; $c_0$&nbsp; of the associated codeword&nbsp; $\underline{c}$?
 
|type="()"}
 
|type="()"}
 
- $c_0 = 1$,
 
- $c_0 = 1$,
Line 52: Line 52:
 
- $c_0 = \alpha^{14}$.
 
- $c_0 = \alpha^{14}$.
  
{Wie lautet das Symbol&nbsp; $c_1$&nbsp; des zugehörigen Codewortes&nbsp; $\underline{c}$?
+
{What is the symbol&nbsp; $c_1$&nbsp; of the associated codeword&nbsp; $\underline{c}$?
 
|type="()"}
 
|type="()"}
 
- $c_1 = 1$,
 
- $c_1 = 1$,
Line 59: Line 59:
 
+ $c_1 = \alpha^{14}$.
 
+ $c_1 = \alpha^{14}$.
  
{Wie lautet das Symbol&nbsp; $c_{13}$&nbsp; des zugehörigen Codewortes&nbsp; $\underline{c}$?
+
{What is the symbol&nbsp; $c_{13}$&nbsp; of the associated codeword&nbsp; $\underline{c}$?
 
|type="()"}
 
|type="()"}
 
- $c_{13} = 1$,
 
- $c_{13} = 1$,
Line 66: Line 66:
 
- $c_{13} = \alpha^{14}$.
 
- $c_{13} = \alpha^{14}$.
  
{Wie lautet das letzte Symbol des zugehörigen Codewortes&nbsp; $\underline{c}$?
+
{What is the last symbol of the associated codeword&nbsp; $\underline{c}$?
 
|type="()"}
 
|type="()"}
 
- $c_{15} = 1$,
 
- $c_{15} = 1$,
Line 73: Line 73:
 
- $c_{14} = \alpha^{14}$.
 
- $c_{14} = \alpha^{14}$.
  
{Welche Aussagen treffen zu?
+
{Which statements are true?
 
|type="[]"}
 
|type="[]"}
- Das Codesymbol "$0$" ist beim&nbsp; $\rm RSC \, (15, \, 5, \, 11)_{16}$&nbsp; nicht möglich.
+
- The code symbol "$0$" is not possible for&nbsp; $\rm RSC \, (15, \, 5, \, 11)_{16}$&nbsp;.
- Ein Codesymbol "$0$" ergibt sich nur für&nbsp; $\underline{u} = (0, \, 0, \, 0, \, 0, \, 0)$.
+
- A code symbol "$0$" results only for&nbsp; $\underline{u} = (0, \, 0, \, 0, \, 0)$.
+ Auch für&nbsp; $\underline{u} &ne; (0, \, 0, \, 0, \, 0, \, 0)$ kann es Codesymbole "$0$" geben.
+
+ Also for&nbsp; $\underline{u} &ne; (0, \, 0, \, 0, \, 0)$ there can be code symbols "$0$".
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus $n = 15$ und $k = 5$ folgt:
+
'''(1)'''&nbsp; From $n = 15$ and $k = 5$ follows:
 
:$$d_{\rm min} = n - k +1 = 15 - 5 + 1 = 11 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm}
 
:$$d_{\rm min} = n - k +1 = 15 - 5 + 1 = 11 \hspace{0.3cm} \Rightarrow  \hspace{0.3cm}
 
  t = \frac{d_{\rm min}-1}{2}\hspace{0.15cm}\underline {=5}\hspace{0.05cm}.$$
 
  t = \frac{d_{\rm min}-1}{2}\hspace{0.15cm}\underline {=5}\hspace{0.05cm}.$$
Line 88: Line 88:
  
  
'''(2)'''&nbsp; Allgemein gilt für das gesuchte Polynom $u(x)$ mit $k = 5$:
+
'''(2)'''&nbsp; In general, for the sought polynomial $u(x)$ with $k = 5$:
 
:$$u(x) = \sum_{i = 0}^{k-1} u_i \cdot x^{i}= u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 +
 
:$$u(x) = \sum_{i = 0}^{k-1} u_i \cdot x^{i}= u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 +
 
u_4 \cdot x^4  \hspace{0.05cm}.$$
 
u_4 \cdot x^4  \hspace{0.05cm}.$$
  
Für $u_0 = \alpha^3, \ u_1 = u_2 = 0, \ u_3 = 1$ und $u_4 = \alpha^{10}$ erweist sich der <u>Lösungsvorschlag 2</u> als richtig.
+
For $u_0 = \alpha^3, \ u_1 = u_2 = 0, \ u_3 = 1$ and $u_4 = \alpha^{10}$ the <u>proposed solution 2</u> turns out to be correct.
  
  
  
'''(3)'''&nbsp; Es gilt $c_0 = u(\alpha^0) = u(1)$:
+
'''(3)'''&nbsp; It holds $c_0 = u(\alpha^0) = u(1)$:
 
:$$c_0 = \alpha^{3} + 1 \cdot  1^3 + \alpha^{10} \cdot 1^{4} = (1000) + (0001) + (0111) = (1110)= \alpha^{11}  
 
:$$c_0 = \alpha^{3} + 1 \cdot  1^3 + \alpha^{10} \cdot 1^{4} = (1000) + (0001) + (0111) = (1110)= \alpha^{11}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig ist somit der <u>Lösungsvorschlag 3</u>.
+
The correct solution is therefore <u>proposed solution 3</u>.
  
  
  
'''(4)'''&nbsp; Aus $c_1 = u(\alpha)$ erhält man den <u>Lösungsvorschlag 4</u>.
+
'''(4)'''&nbsp; From $c_1 = u(\alpha)$ one obtains the <u>proposed solution 4</u>.
 
:$$c_1 = u(\alpha^{1}) =\alpha^{3} +1 \cdot  \alpha^{3} + \alpha^{10} \cdot \alpha^{4} =  \alpha^{14}
 
:$$c_1 = u(\alpha^{1}) =\alpha^{3} +1 \cdot  \alpha^{3} + \alpha^{10} \cdot \alpha^{4} =  \alpha^{14}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 110: Line 110:
  
  
'''(5)'''&nbsp; Für das vorletzte Symbol gilt $c_{13} = u(\alpha^{13})$:
+
'''(5)'''&nbsp; For the penultimate symbol $c_{13} = u(\alpha^{13})$ holds:
 
:$$c_{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u(\alpha^{13}) =\alpha^{3} + 1 \cdot  \alpha^{13 \hspace{0.05cm}\cdot \hspace{0.05cm}3} + \alpha^{10} \cdot \alpha^{13 \hspace{0.05cm}\cdot \hspace{0.05cm}4} =  \alpha^{3} + \alpha^{39}+ \alpha^{62} =\alpha^{3} + \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}2} \cdot \alpha^{9}+ \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}4} \cdot \alpha^{2} =  
 
:$$c_{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u(\alpha^{13}) =\alpha^{3} + 1 \cdot  \alpha^{13 \hspace{0.05cm}\cdot \hspace{0.05cm}3} + \alpha^{10} \cdot \alpha^{13 \hspace{0.05cm}\cdot \hspace{0.05cm}4} =  \alpha^{3} + \alpha^{39}+ \alpha^{62} =\alpha^{3} + \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}2} \cdot \alpha^{9}+ \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}4} \cdot \alpha^{2} =  
 
  \alpha^{3} + \alpha^{9} + \alpha^{2}$$
 
  \alpha^{3} + \alpha^{9} + \alpha^{2}$$
Line 116: Line 116:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Richtig ist somit der  <u>Lösungsvorschlag 2</u>.
+
The correct solution is therefore <u>proposed solution 2</u>.
  
  
  
'''(6)'''&nbsp; Das letzte Codesymbol ist $c_{14} = u(\alpha^{14})$:
+
'''(6)'''&nbsp; The last code symbol is $c_{14} = u(\alpha^{14})$:
 
:$$c_{14} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u(\alpha^{14}) =\alpha^{3} + 1 \cdot \alpha^{14 \hspace{0.05cm}\cdot \hspace{0.05cm}3} + \alpha^{10} \cdot \alpha^{14 \hspace{0.05cm}\cdot \hspace{0.05cm}4} =  \alpha^{3} + \alpha^{42}+ \alpha^{66} =\alpha^{3} + \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}2} \cdot \alpha^{12}+ \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}4} \cdot \alpha^{6} =  
 
:$$c_{14} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u(\alpha^{14}) =\alpha^{3} + 1 \cdot \alpha^{14 \hspace{0.05cm}\cdot \hspace{0.05cm}3} + \alpha^{10} \cdot \alpha^{14 \hspace{0.05cm}\cdot \hspace{0.05cm}4} =  \alpha^{3} + \alpha^{42}+ \alpha^{66} =\alpha^{3} + \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}2} \cdot \alpha^{12}+ \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}4} \cdot \alpha^{6} =  
 
  \alpha^{3} + \alpha^{12} + \alpha^{6} =$$
 
  \alpha^{3} + \alpha^{12} + \alpha^{6} =$$
Line 126: Line 126:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Richtig ist somit der  <u>Lösungsvorschlag 3</u>.
+
The correct solution is therefore <u>proposed solution 3</u>.
  
  
'''(7)'''&nbsp; Das Codesymbol "$0$" tritt genau so oft auf wie alle anderen Symbole "$\alpha^i$" &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 3</u>.
+
'''(7)'''&nbsp; The code symbol "$0$" occurs just as often as all other symbols "$\alpha^i$" &nbsp;&#8658;&nbsp; <u>proposed solution 3</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 18:16, 2 September 2022

$\rm GF(2^4)$  in power, polynomial and coefficient notation

The task at hand is similar to the one in  "Exercise 2.7". However, we now refer here to the Galois field  $\rm GF(2^4)$, whose elements are given opposite both in powers and polynomial representations and by the coefficient vector. Further, in  $\rm GF(2^4)$:

$$\alpha^{16} = \alpha^{1}\hspace{0.05cm},\hspace{0.2cm} \alpha^{17} = \alpha^{2}\hspace{0.05cm},\hspace{0.2cm} \alpha^{18} = \alpha^{3}\hspace{0.05cm},\hspace{0.05cm}\text{...} $$

To encode the information block of length  $k = 5$,

$$\underline{u} = (u_0,\ u_1,\ u_2,\ u_3,\ u_4)\hspace{0.05cm},$$

we form the polynomial

$$u(x) = u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 + u_4 \cdot x^4 $$

with  $u_0, \hspace{0.05cm}\text{...} \hspace{0.1cm} , u_4 ∈ \rm GF(2^4)$.

The  $n = 15$  codewords are then obtained by substituting into  $u(x)$  the elements of  $\rm GF(2^4) \ \backslash \ \{0\}$ :

$$c_0 = u(\alpha^{0})\hspace{0.05cm},\hspace{0.2cm} c_1 = u(\alpha^{1})\hspace{0.05cm}, \hspace{0.2cm} c_2 = u(\alpha^{2})\hspace{0.05cm}, \hspace{0.15cm} ... \hspace{0.15cm},\hspace{0.20cm} c_{14} = u(\alpha^{14})\hspace{0.05cm}.$$




Hints:



Questions

1

How many symbol errors can be corrected?

$t \ = \ $

2

What is the polynomial  $u(x)$  for  $\underline{u} = (\alpha^3, \, 0, \, 0, \, 1, \, \alpha^{10})$?

$u(x) = \alpha^3 + x + \alpha^{10} \cdot x^2$,
$u(x) = \alpha^3 + x^3 + \alpha^{10} \cdot x^4$,
$u(x) = 1 + x + x^2 + x^3 + x^4$.

3

What is the symbol  $c_0$  of the associated codeword  $\underline{c}$?

$c_0 = 1$,
$c_0 = \alpha^5$,
$c_0 = \alpha^{11}$,
$c_0 = \alpha^{14}$.

4

What is the symbol  $c_1$  of the associated codeword  $\underline{c}$?

$c_1 = 1$,
$c_1 = \alpha^5$,
$c_1 = \alpha^{11}$,
$c_1 = \alpha^{14}$.

5

What is the symbol  $c_{13}$  of the associated codeword  $\underline{c}$?

$c_{13} = 1$,
$c_{13} = \alpha^5$,
$c_{13} = \alpha^{11}$,
$c_{13} = \alpha^{14}$.

6

What is the last symbol of the associated codeword  $\underline{c}$?

$c_{15} = 1$,
$c_{14} = 1$,
$c_{14} = \alpha^7$,
$c_{14} = \alpha^{14}$.

7

Which statements are true?

The code symbol "$0$" is not possible for  $\rm RSC \, (15, \, 5, \, 11)_{16}$ .
A code symbol "$0$" results only for  $\underline{u} = (0, \, 0, \, 0, \, 0)$.
Also for  $\underline{u} ≠ (0, \, 0, \, 0, \, 0)$ there can be code symbols "$0$".


Solution

(1)  From $n = 15$ and $k = 5$ follows:

$$d_{\rm min} = n - k +1 = 15 - 5 + 1 = 11 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t = \frac{d_{\rm min}-1}{2}\hspace{0.15cm}\underline {=5}\hspace{0.05cm}.$$


(2)  In general, for the sought polynomial $u(x)$ with $k = 5$:

$$u(x) = \sum_{i = 0}^{k-1} u_i \cdot x^{i}= u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 + u_4 \cdot x^4 \hspace{0.05cm}.$$

For $u_0 = \alpha^3, \ u_1 = u_2 = 0, \ u_3 = 1$ and $u_4 = \alpha^{10}$ the proposed solution 2 turns out to be correct.


(3)  It holds $c_0 = u(\alpha^0) = u(1)$:

$$c_0 = \alpha^{3} + 1 \cdot 1^3 + \alpha^{10} \cdot 1^{4} = (1000) + (0001) + (0111) = (1110)= \alpha^{11} \hspace{0.05cm}.$$

The correct solution is therefore proposed solution 3.


(4)  From $c_1 = u(\alpha)$ one obtains the proposed solution 4.

$$c_1 = u(\alpha^{1}) =\alpha^{3} +1 \cdot \alpha^{3} + \alpha^{10} \cdot \alpha^{4} = \alpha^{14} \hspace{0.05cm}.$$


(5)  For the penultimate symbol $c_{13} = u(\alpha^{13})$ holds:

$$c_{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u(\alpha^{13}) =\alpha^{3} + 1 \cdot \alpha^{13 \hspace{0.05cm}\cdot \hspace{0.05cm}3} + \alpha^{10} \cdot \alpha^{13 \hspace{0.05cm}\cdot \hspace{0.05cm}4} = \alpha^{3} + \alpha^{39}+ \alpha^{62} =\alpha^{3} + \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}2} \cdot \alpha^{9}+ \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}4} \cdot \alpha^{2} = \alpha^{3} + \alpha^{9} + \alpha^{2}$$
$$\Rightarrow \hspace{0.3cm}c_{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1000) + (1010) + (0100) = (0110) = \alpha^{5} \hspace{0.05cm}.$$

The correct solution is therefore proposed solution 2.


(6)  The last code symbol is $c_{14} = u(\alpha^{14})$:

$$c_{14} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u(\alpha^{14}) =\alpha^{3} + 1 \cdot \alpha^{14 \hspace{0.05cm}\cdot \hspace{0.05cm}3} + \alpha^{10} \cdot \alpha^{14 \hspace{0.05cm}\cdot \hspace{0.05cm}4} = \alpha^{3} + \alpha^{42}+ \alpha^{66} =\alpha^{3} + \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}2} \cdot \alpha^{12}+ \alpha^{15 \hspace{0.05cm}\cdot \hspace{0.05cm}4} \cdot \alpha^{6} = \alpha^{3} + \alpha^{12} + \alpha^{6} =$$
$$\Rightarrow \hspace{0.3cm}c_{14} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(1000) + (1111) + (1100) = (1011) = \alpha^{7} \hspace{0.05cm}.$$

The correct solution is therefore proposed solution 3.


(7)  The code symbol "$0$" occurs just as often as all other symbols "$\alpha^i$"  ⇒  proposed solution 3.