Difference between revisions of "Aufgaben:Exercise 2.10: SSB-AM with Channel Distortions"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |t…“)
 
m
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Single-Sideband_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1045__Mod_A_2_9.png|right|frame|Transmission spectrum of the analytical signal and channel frequency response]]
 +
Let us consider the transmission of the source signal
 +
:$$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$
 +
over a Gaussian bandpass channel with center frequency  &nbsp;$f_{\rm M} = 48 \ \rm  kHz$.&nbsp;
 +
*This is different from the carrier frequency &nbsp;$f_{\rm T} = 50 \ \rm  kHz$&nbsp; used in modulation.&nbsp;
 +
*The frequencies &nbsp;$f_2$&nbsp; and &nbsp;$f_4$&nbsp; stand for  &nbsp;$f = 2 \ \rm  kHz$&nbsp; und &nbsp;$f = 4 \ \rm  kHz$,&nbsp; resp.
  
  
===Fragebogen===
+
We will now investigate the following modulation methods with respect to the spectrum &nbsp;$S_+(f)$&nbsp; of the analytical signal as shown in the upper graph:
 +
* DSB–AM&nbsp; $($all four spectral lines at &nbsp;$46 \ \rm  kHz$,&nbsp; $48 \ \rm  kHz$,&nbsp; $52 \ \rm  kHz$&nbsp; and&nbsp; $54 \ \rm  kHz)$ &nbsp; &rArr; &nbsp; "double-sideband" ,
 +
*USB–AM&nbsp; $($only blue spectral lines at &nbsp;$52 \ \rm  kHz$&nbsp; and&nbsp; $54 \ \rm  kHz)$&nbsp; &rArr; &nbsp; "upper-sideband",
 +
*LSB–AM&nbsp; $($only green spectral lines at &nbsp;$46 \ \rm  kHz$&nbsp; and&nbsp; $48 \ \rm  kHz)$&nbsp; &rArr; &nbsp; "lower-sideband".
 +
 
 +
 
 +
In each case,&nbsp;  a synchronous demodulator is used to first convert the receiver-side carrier signal
 +
:$$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\rm DSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}$$
 +
by multiplication and then completely suppresses the components at twice the carrier frequency.&nbsp;  With an ideal channel &nbsp;$H_{\rm K}(f) = 1$&nbsp;, &nbsp;$v(t) = q(t)$&nbsp; would hold in all cases.
 +
 
 +
The Gaussian channel considered here is given by the following auxiliary values:
 +
:$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm}
 +
H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$
 +
In each case,&nbsp; write the sink signal in the form
 +
:$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$
 +
All calculations are to be carried out for both a perfect phase synchronization &nbsp;$(Δϕ_{\rm T} = 0)$&nbsp; as well as for a phase offset of &nbsp;$Δϕ_{\rm T} = 30^\circ$.&nbsp; This is present,&nbsp; for example,&nbsp; if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:
 +
:$$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]].
 +
*Reference will also be made to the chapter&nbsp;  [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{Calculate the amplitudes for &nbsp; <u>double-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
 +
|type="{}"}
 +
$A_2 \ = \ $ { 1.882 3% } $\ \rm V$
 +
$A_4 \ = \ $ { 1.722 3% } $\ \rm V$
 +
 +
{What are the values for &nbsp;$A_2$&nbsp; and &nbsp;$τ_2$&nbsp; for&nbsp; <u>double-sideband AM</u>&nbsp; and a&nbsp; <u>phase offset</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
 +
|type="{}"}
 +
$A_2 \ = \ $ { 1.63 3% } $\ \rm V$
 +
$τ_2 \hspace{0.25cm} = \ $ { 0. } $\ \rm &micro; s$
 +
 +
{Calculate the amplitudes&nbsp;$A_2$&nbsp; and &nbsp;$A_4$&nbsp; for&nbsp; <u>upper-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u>&nbsp; $(Δϕ_{\rm T} = 0)$.
 +
|type="{}"}
 +
$A_2 \ = \ $ { 1.764 3% } $\ \rm V$
 +
$A_4 \ = \ $ { 1.508 3% } $\ \rm V$
 +
 +
{Give the signal amplitudes for &nbsp; <u>lower-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
 +
|type="{}"}
 +
$A_2 \ = \ $ { 2 3% } $\ \rm V$
 +
$A_4 \ = \ $ { 1.936 3% } $\ \rm V$
  
{Input-Box Frage
+
{In contrast,&nbsp; what are the signal parameters for&nbsp; <u>lower-sideband AM</u>&nbsp; and a&nbsp; <u>phase offset</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$A_2 \ = \ $  { 2 3% } $\ \rm V$
 +
$τ_2 \hspace{0.25cm} = \ $  { 41.6 3% } $\ \rm &micro; s$
 +
$A_4 \ = \ $ { 1.936 3% } $\ \rm V$
 +
$τ_4 \hspace{0.25cm} = \ $ { 20.8 3% } $\ \rm &micro;  s$
 +
 
 +
{Which of these statements are true given your results?&nbsp; Here,&nbsp; "channel distortions"&nbsp; should always be understood as a kind of attenuation distortion.
 +
|type="[]"}
 +
+ In&nbsp; "double-sideband AM",&nbsp; each channel distortion leads to attenuation distortions.
 +
- In&nbsp; "single-sideband AM",&nbsp; each channel distortion leads to phase distortions.
 +
- In&nbsp; "double-sideband AM",&nbsp; a phase offset leads to attenuation distortions.
 +
+ In&nbsp; "single-sideband AM",&nbsp; a phase offset leads to phase distortions.
  
  
Line 23: Line 81:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; For DSB–AM,&nbsp; the following attenuation factors are to be taken into account:
'''2.'''
+
:$$\alpha_2  =  {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,$$
'''3.'''
+
:$$\alpha_4  =  {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.$$
'''4.'''
+
*Thus,&nbsp; we get the amplitudes &nbsp; $A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}$&nbsp; and&nbsp; $A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}$.
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
 
 +
'''(2)'''&nbsp; For DSB-AM,&nbsp; a phase offset between the carrier frequencies at transmitter and receiver, resp.,&nbsp; leads to one and the same attenuation for all frequencies:
 +
:$$A_2  =  \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},$$
 +
:$$A_4  =  \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.$$
 +
*The delay times are &nbsp; $τ_2\hspace{0.15cm}\underline {= 0}$&nbsp; and&nbsp; $τ_4 = 0$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; For USB–AM,&nbsp; the attenuation factor &nbsp; $α_2$&nbsp; is only determined by &nbsp; $H_{\rm K}(f = 52\ \rm  kHz)$.
 +
*Since the principal USB amplitude loss by a factor of &nbsp; $2$&nbsp; is compensated for by a larger carrier amplitude,&nbsp; the following holds:
 +
:$$A_2  =  0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},$$
 +
:$$A_4  =  0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Analogous to the solution in subtask&nbsp; '''(3)''',&nbsp; we obtain here:
 +
:$$ A_2  =  H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},$$
 +
:$$A_4  =  H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; For LSB–AM,&nbsp; the received signal is:
 +
:$$r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.$$
 +
*By multiplication with the receiver-side carrier signal &nbsp; $z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T})$,&nbsp; applying the trigonometric addition theorem gives:
 +
:$$v(t) = r(t) \cdot z_{\rm E}(t) =  \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T})
 +
+  {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
 +
:$$ \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.$$
 +
*Considering the downstream lowpass filter,&nbsp; this can also be written as:
 +
:$$ v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.$$
 +
*The amplitudes are unchanged compared to subtask&nbsp; '''(4)'''.&nbsp; For the delay times when &nbsp; $Δϕ_{\rm T} = π/6$,&nbsp; we get:
 +
:$$ \tau_2  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm &micro; s}},\hspace{0.5cm} \tau_4  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm &micro; s}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; The&nbsp; <u>first and last answers</u>&nbsp; are correct:
 +
*Also for&nbsp; "single-sideband AM"&nbsp;:&nbsp; Attenuation distortions on the channel lead only to attenuation distortions with respect to&nbsp; $v(t)$.
 +
*Phase distortions are only present for a demodulator with a phase offset in the case of&nbsp; "single-sideband AM".
 +
*For&nbsp; "double-sideband AM",&nbsp; such a phase offset would not result in any distortions,&nbsp; but only in frequency-independent attenuation.
 +
*Phase distortions with respect to&nbsp; $v(t)$&nbsp; can also arise in&nbsp; "DSB–AM"&nbsp; and&nbsp; "SSB–AM",&nbsp; if these already occur on the channel.
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.4  Einseitenbandmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.4  Single Sideband Amplitude Modulation^]]

Latest revision as of 17:55, 31 March 2022

Transmission spectrum of the analytical signal and channel frequency response

Let us consider the transmission of the source signal

$$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$

over a Gaussian bandpass channel with center frequency  $f_{\rm M} = 48 \ \rm kHz$. 

  • This is different from the carrier frequency  $f_{\rm T} = 50 \ \rm kHz$  used in modulation. 
  • The frequencies  $f_2$  and  $f_4$  stand for  $f = 2 \ \rm kHz$  und  $f = 4 \ \rm kHz$,  resp.


We will now investigate the following modulation methods with respect to the spectrum  $S_+(f)$  of the analytical signal as shown in the upper graph:

  • DSB–AM  $($all four spectral lines at  $46 \ \rm kHz$,  $48 \ \rm kHz$,  $52 \ \rm kHz$  and  $54 \ \rm kHz)$   ⇒   "double-sideband" ,
  • USB–AM  $($only blue spectral lines at  $52 \ \rm kHz$  and  $54 \ \rm kHz)$  ⇒   "upper-sideband",
  • LSB–AM  $($only green spectral lines at  $46 \ \rm kHz$  and  $48 \ \rm kHz)$  ⇒   "lower-sideband".


In each case,  a synchronous demodulator is used to first convert the receiver-side carrier signal

$$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\rm DSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}$$

by multiplication and then completely suppresses the components at twice the carrier frequency.  With an ideal channel  $H_{\rm K}(f) = 1$ ,  $v(t) = q(t)$  would hold in all cases.

The Gaussian channel considered here is given by the following auxiliary values:

$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm} H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$

In each case,  write the sink signal in the form

$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$

All calculations are to be carried out for both a perfect phase synchronization  $(Δϕ_{\rm T} = 0)$  as well as for a phase offset of  $Δϕ_{\rm T} = 30^\circ$.  This is present,  for example,  if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:

$$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$



Hints:



Questions

1

Calculate the amplitudes for   double-sideband AM  and  perfect synchronization  $(Δϕ_{\rm T} = 0)$.

$A_2 \ = \ $

$\ \rm V$
$A_4 \ = \ $

$\ \rm V$

2

What are the values for  $A_2$  and  $τ_2$  for  double-sideband AM  and a  phase offset  $(Δϕ_{\rm T} = 30^\circ)$?

$A_2 \ = \ $

$\ \rm V$
$τ_2 \hspace{0.25cm} = \ $

$\ \rm µ s$

3

Calculate the amplitudes $A_2$  and  $A_4$  for  upper-sideband AM  and  perfect synchronization  $(Δϕ_{\rm T} = 0)$.

$A_2 \ = \ $

$\ \rm V$
$A_4 \ = \ $

$\ \rm V$

4

Give the signal amplitudes for   lower-sideband AM  and  perfect synchronization  $(Δϕ_{\rm T} = 0)$.

$A_2 \ = \ $

$\ \rm V$
$A_4 \ = \ $

$\ \rm V$

5

In contrast,  what are the signal parameters for  lower-sideband AM  and a  phase offset  $(Δϕ_{\rm T} = 30^\circ)$?

$A_2 \ = \ $

$\ \rm V$
$τ_2 \hspace{0.25cm} = \ $

$\ \rm µ s$
$A_4 \ = \ $

$\ \rm V$
$τ_4 \hspace{0.25cm} = \ $

$\ \rm µ s$

6

Which of these statements are true given your results?  Here,  "channel distortions"  should always be understood as a kind of attenuation distortion.

In  "double-sideband AM",  each channel distortion leads to attenuation distortions.
In  "single-sideband AM",  each channel distortion leads to phase distortions.
In  "double-sideband AM",  a phase offset leads to attenuation distortions.
In  "single-sideband AM",  a phase offset leads to phase distortions.


Solution

(1)  For DSB–AM,  the following attenuation factors are to be taken into account:

$$\alpha_2 = {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,$$
$$\alpha_4 = {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.$$
  • Thus,  we get the amplitudes   $A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}$  and  $A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}$.


(2)  For DSB-AM,  a phase offset between the carrier frequencies at transmitter and receiver, resp.,  leads to one and the same attenuation for all frequencies:

$$A_2 = \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},$$
$$A_4 = \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.$$
  • The delay times are   $τ_2\hspace{0.15cm}\underline {= 0}$  and  $τ_4 = 0$.


(3)  For USB–AM,  the attenuation factor   $α_2$  is only determined by   $H_{\rm K}(f = 52\ \rm kHz)$.

  • Since the principal USB amplitude loss by a factor of   $2$  is compensated for by a larger carrier amplitude,  the following holds:
$$A_2 = 0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},$$
$$A_4 = 0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.$$


(4)  Analogous to the solution in subtask  (3),  we obtain here:

$$ A_2 = H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},$$
$$A_4 = H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.$$


(5)  For LSB–AM,  the received signal is:

$$r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.$$
  • By multiplication with the receiver-side carrier signal   $z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T})$,  applying the trigonometric addition theorem gives:
$$v(t) = r(t) \cdot z_{\rm E}(t) = \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T}) + {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
$$ \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.$$
  • Considering the downstream lowpass filter,  this can also be written as:
$$ v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.$$
  • The amplitudes are unchanged compared to subtask  (4).  For the delay times when   $Δϕ_{\rm T} = π/6$,  we get:
$$ \tau_2 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm µ s}},\hspace{0.5cm} \tau_4 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm µ s}} \hspace{0.05cm}.$$


(6)  The  first and last answers  are correct:

  • Also for  "single-sideband AM" :  Attenuation distortions on the channel lead only to attenuation distortions with respect to  $v(t)$.
  • Phase distortions are only present for a demodulator with a phase offset in the case of  "single-sideband AM".
  • For  "double-sideband AM",  such a phase offset would not result in any distortions,  but only in frequency-independent attenuation.
  • Phase distortions with respect to  $v(t)$  can also arise in  "DSB–AM"  and  "SSB–AM",  if these already occur on the channel.