Difference between revisions of "Aufgaben:Exercise 2.1: DSB-AM with Cosine? Or with Sine?"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/ Zweiseitenband-Amplitudenmodula }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice…“)
 
m
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/ Zweiseitenband-Amplitudenmodula
+
{{quiz-Header|Buchseite=Modulation_Methods/Double-Sideband_Amplitude_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID985__Mod_A_2_1.png|right|frame|Spectrum of the analytical signal]]
 +
Let us consider the amplitude modulation of the source signal &nbsp;$q(t)$&nbsp; with the carrier signal &nbsp;$z(t)$.&nbsp;These signals are given by:
 +
:$$q(t)  =  A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
 +
:$$z(t)  =  \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$
 +
The carrier frequency is known to be&nbsp;$f_{\rm T} = 40\text{ kHz}$.&nbsp; The other system parameters &nbsp;$A_{\rm N}$, &nbsp;$f_{\rm N}$, &nbsp;$ϕ_{\rm N}$&nbsp; and &nbsp;$ϕ_{\rm T}$&nbsp; are to be determined in this exercise.&nbsp;
  
 +
*The subscript&nbsp; "N"&nbsp; refers to the message signal&nbsp; (German:&nbsp; "Nachrichtensignal")&nbsp; $q(t)$&nbsp;
 +
*and&nbsp; "T" to the carrier&nbsp; (German:&nbsp; "Trägersignal")&nbsp; $z(t)$.
  
===Fragebogen===
+
 
 +
The spectrum &nbsp;$S_+(f)$&nbsp; of the analytical signal &nbsp;$s_+(t)$&nbsp; at the modulator output is also given (see graph):
 +
:$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$
 +
Here,&nbsp; the abbreviations&nbsp; $f_{30} = 30\text{ kHz}$&nbsp; and&nbsp; $f_{50} = 50\text{ kHz}$&nbsp; are used.
 +
 
 +
As a reminder:&nbsp; The spectrum &nbsp;$S_+(f)$&nbsp; is obtained from &nbsp;$S(f)$ by
 +
*truncating the components at negative frequencies and
 +
*doubling positive frequencies.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter &nbsp;[[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 +
*Particular reference will be made to the pages &nbsp;[[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_frequency_domain|Description in the frequency domain]]&nbsp; and  &nbsp;[[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_time_domain|Description in the time domain]].
 +
*The following trigonometric identities are given:
 +
:$$\cos(\alpha)\cdot \cos(\beta)  =  {1}/{2} \cdot \big[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\big ] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha)  =  \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm}  \cos(90^{\circ}+ \hspace{0.05cm} \alpha)  =  -\sin(\alpha) \hspace{0.05cm}.$$
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Find the spectrum &nbsp;$S(f)$.&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $S(f)$&nbsp; consists of four Dirac delta functions.
+ Richtig
+
- All Dirac weights have the same magnitude&nbsp; $2\text{ V}$.
 +
+ All Dirac weights are imaginary.
 +
 
 +
 +
{What is the modulated signal &nbsp;$s(t)$?&nbsp; Which statement is true?
 +
|type="()"}
 +
+ It is DSB-AM without carrier &nbsp; &rArr; &nbsp; "DSB-AM with carrier suppression".
 +
- It is DSB-AM with carrier.
  
 +
{State the message signal frequency $f_{\rm N}$.
 +
|type="{}"}
 +
$f_{\rm N} \ = \ $ { 10 3% } $\ \text{kHz}$
  
{Input-Box Frage
+
{Determine the phases of the two signals.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$ϕ_{\rm N} \ = \ $ { 0. } $\ \text{degrees}$
 +
$ϕ_{\rm T} \ = \ $ { 90 }  $\ \text{degrees}$
  
 +
{What is the amplitude of the message signal?
 +
|type="{}"}
 +
$A_{\rm N} \ = \ $ { 4 3% } $\ \text{V}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:
'''2.'''
+
*At positive frequencies,&nbsp; $S_+(f)$&nbsp; is obtained from&nbsp; $S(f)$&nbsp; by doubling.
'''3.'''
+
*It follows that the impulse weights of&nbsp; $S(f)$&nbsp; are each only &nbsp; ${\rm j} · 1 \text{ V}$.
'''4.'''
+
*Because of the Assignment Theorem,&nbsp; $S(f)$&nbsp; must be an odd function.
'''5.'''
+
*Therefore,&nbsp; $S(f)$&nbsp; has two more Dirac delta functions at $f = -f_{30}$&nbsp; and $f = -f_{50}$,&nbsp; each with weight&nbsp; $-{\rm j} · 1 \text{ V}$:
'''6.'''
+
:$$S(f) = 1\,{\rm V} \cdot \big[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\big] \hspace{0.05cm}.$$
'''7.'''
+
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The inverse Fourier transform of &nbsp; $S(f)$&nbsp; with&nbsp; $ω_{30} = 2π · f_{30}$&nbsp; and&nbsp; $ω_{50} = 2πf_{50}$&nbsp;  leads to the following signal:
 +
:$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$
 +
*This does not contain any component at the carrier frequency $f_{\rm T} = 40\text{ kHz}$,&nbsp; so the&nbsp; <u>first statement</u>&nbsp;  is true.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; For DSB–AM without carrier, &nbsp; $s(t)$&nbsp; includes only the two frequencies  $f_{\rm T} – f_{\rm N}$&nbsp; and&nbsp; $f_{\rm T} + f_{\rm N}$.
 +
*Hence,&nbsp; with $f_{\rm T} = 40\text{ kHz}$&nbsp; for the message frequency,&nbsp; it follows that &nbsp; $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm  kHz}.$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For DSB–AM without carrier,&nbsp; it holds that:
 +
:$$s(t)  =  q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
 +
:$$\Rightarrow \hspace{0.5cm} s(t) =  \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$
 +
*A comparison with the result from subtask&nbsp; '''(2)'''&nbsp; shows that:
 +
:$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N})  =  -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$
 +
:$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N})  =  -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$
 +
*Both equations can only be satisfied simultaneously with phase &nbsp; $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$&nbsp;.
 +
*Additionally,&nbsp; from the last given trigonometric relation it follows that&nbsp; $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Comparing the results from subtasks&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)'''&nbsp; leads to&nbsp; $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$.&nbsp; Thus,&nbsp; the equations of the signals involved in the modulation are:
 +
:$$q(t )  =  4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
 +
:$$z(t)  =  1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.1 Zweiseitenband-Amplitudenmodula^]]
+
[[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]]

Latest revision as of 17:31, 24 March 2022

Spectrum of the analytical signal

Let us consider the amplitude modulation of the source signal  $q(t)$  with the carrier signal  $z(t)$. These signals are given by:

$$q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N})\hspace{0.05cm},$$
$$z(t) = \hspace{0.15cm}1 \hspace{0.13cm} \cdot \hspace{0.1cm}\cos(2 \pi f_{\rm T} t + \phi_{\rm T})\hspace{0.05cm}.$$

The carrier frequency is known to be $f_{\rm T} = 40\text{ kHz}$.  The other system parameters  $A_{\rm N}$,  $f_{\rm N}$,  $ϕ_{\rm N}$  and  $ϕ_{\rm T}$  are to be determined in this exercise. 

  • The subscript  "N"  refers to the message signal  (German:  "Nachrichtensignal")  $q(t)$ 
  • and  "T" to the carrier  (German:  "Trägersignal")  $z(t)$.


The spectrum  $S_+(f)$  of the analytical signal  $s_+(t)$  at the modulator output is also given (see graph):

$$S_+(f) = {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{30} )+ {\rm j}\cdot 2\,{\rm V} \cdot \delta ( f - f_{50} )\hspace{0.05cm}.$$

Here,  the abbreviations  $f_{30} = 30\text{ kHz}$  and  $f_{50} = 50\text{ kHz}$  are used.

As a reminder:  The spectrum  $S_+(f)$  is obtained from  $S(f)$ by

  • truncating the components at negative frequencies and
  • doubling positive frequencies.



Hints:

$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \big[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\big ] \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}- \hspace{0.05cm} \alpha) = \sin(\alpha) \hspace{0.05cm}, \hspace{0.5cm} \cos(90^{\circ}+ \hspace{0.05cm} \alpha) = -\sin(\alpha) \hspace{0.05cm}.$$


Questions

1

Find the spectrum  $S(f)$.  Which of the following statements are correct?

$S(f)$  consists of four Dirac delta functions.
All Dirac weights have the same magnitude  $2\text{ V}$.
All Dirac weights are imaginary.

2

What is the modulated signal  $s(t)$?  Which statement is true?

It is DSB-AM without carrier   ⇒   "DSB-AM with carrier suppression".
It is DSB-AM with carrier.

3

State the message signal frequency $f_{\rm N}$.

$f_{\rm N} \ = \ $

$\ \text{kHz}$

4

Determine the phases of the two signals.

$ϕ_{\rm N} \ = \ $

$\ \text{degrees}$
$ϕ_{\rm T} \ = \ $

$\ \text{degrees}$

5

What is the amplitude of the message signal?

$A_{\rm N} \ = \ $

$\ \text{V}$


Solution

(1)  Answers 1 and 3  are correct:

  • At positive frequencies,  $S_+(f)$  is obtained from  $S(f)$  by doubling.
  • It follows that the impulse weights of  $S(f)$  are each only   ${\rm j} · 1 \text{ V}$.
  • Because of the Assignment Theorem,  $S(f)$  must be an odd function.
  • Therefore,  $S(f)$  has two more Dirac delta functions at $f = -f_{30}$  and $f = -f_{50}$,  each with weight  $-{\rm j} · 1 \text{ V}$:
$$S(f) = 1\,{\rm V} \cdot \big[ {\rm j}\cdot \delta ( f - f_{30} )-{\rm j} \cdot \delta ( f + f_{30} )+ {\rm j} \cdot \delta ( f - f_{50} )-{\rm j} \cdot \delta ( f + f_{50} )\big] \hspace{0.05cm}.$$


(2)  The inverse Fourier transform of   $S(f)$  with  $ω_{30} = 2π · f_{30}$  and  $ω_{50} = 2πf_{50}$  leads to the following signal:

$$ s(t) = -2\,{\rm V} \cdot \sin(\omega_{\rm 30} t )-2\,{\rm V} \cdot \sin(\omega_{\rm 50} t )\hspace{0.05cm}.$$
  • This does not contain any component at the carrier frequency $f_{\rm T} = 40\text{ kHz}$,  so the  first statement  is true.


(3)  For DSB–AM without carrier,   $s(t)$  includes only the two frequencies $f_{\rm T} – f_{\rm N}$  and  $f_{\rm T} + f_{\rm N}$.

  • Hence,  with $f_{\rm T} = 40\text{ kHz}$  for the message frequency,  it follows that   $f_{\rm N} \hspace{0.05cm}\underline {= 10\ \rm kHz}.$


(4)  For DSB–AM without carrier,  it holds that:

$$s(t) = q(t) \cdot z(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} t + \phi_{\rm N})\cdot \cos(\omega_{\rm T} t + \phi_{\rm T})$$
$$\Rightarrow \hspace{0.5cm} s(t) = \frac{A_{\rm N}}{2} \cdot \left[ \cos\left((\omega_{\rm T} +\omega_{\rm N})\cdot t + \phi_{\rm T}+ \phi_{\rm N}\right) + \cos\left((\omega_{\rm T} -\omega_{\rm N})\cdot t + \phi_{\rm T}- \phi_{\rm N}\right) \right] \hspace{0.05cm}.$$
  • A comparison with the result from subtask  (2)  shows that:
$$\cos(\omega_{\rm 30} \cdot t + \phi_{\rm T}- \phi_{\rm N}) = -\sin(\omega_{\rm 30} \cdot t )\hspace{0.05cm},$$
$$\cos(\omega_{\rm 50} \cdot t + \phi_{\rm T}+ \phi_{\rm N}) = -\sin(\omega_{\rm 50} \cdot t ) \hspace{0.05cm}.$$
  • Both equations can only be satisfied simultaneously with phase   $ϕ_{\rm N} \hspace{0.05cm}\underline {= 0}$ .
  • Additionally,  from the last given trigonometric relation it follows that  $ϕ_{\rm T} \hspace{0.05cm}\underline {= 90^\circ} = π/2$.


(5)  Comparing the results from subtasks  (2)  and  (4)  leads to  $A_{\rm N} \hspace{0.05cm}\underline {= 4 \ \rm V}$.  Thus,  the equations of the signals involved in the modulation are:

$$q(t ) = 4\,{\rm V} \cdot \cos (2 \pi \cdot 10\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
$$z(t) = 1 \cdot \cos (2 \pi \cdot 40\,{\rm kHz} \cdot t + 90^{\circ}) = -\sin (2 \pi \cdot 40\,{\rm kHz} \cdot t )\hspace{0.05cm}.$$