Difference between revisions of "Aufgaben:Exercise 2.3: Reducible and Irreducible Polynomials"

From LNTwww
 
(27 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2503__KC_A_2_3.png|right|frame|Polynome von Grad $m = 2, \ m = 3$ und $m = 4$]]
+
[[File:P_ID2503__KC_A_2_3.png|right|frame|Polynomials of degree  $m = 2$,  $m = 3$,  $m = 4$]]
Wichtige Voraussetzungen für das Verständnis der Kanalcodierung sind Kenntnisse der Polynomeigenschaften. Wir betrachten in dieser Aufgabe Polynome der Form
+
Important prerequisites for understanding channel coding are knowledge of polynomial properties.  
 +
 
 +
In this exercise we consider polynomials of the form
 
:$$a(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}
 
:$$a(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
  
wobei für die Koeffizienten $a_i ∈ {\rm GF}(2) = \{0, \, 1\}$ gilt $(0 ≤ i ʹ m)$ und der höchste Koeffizient stets zu $a_m = 1$ vorausgesetzt wird. Man bezeichnet $m$ als den Grad des Polynoms. Nebenstehend sind zehn Polynome angegeben, wobei der Polynomgrad entweder $m = 2$ (rote Schrift), $m = 3$ (blaue Schrift) oder $m = 4$ (grüne Schrift) ist.
+
*where for the coefficients  $a_i ∈ {\rm GF}(2) = \{0, \, 1\}$  holds  $(0 ≤ i ≤ m)$
 +
 +
*and the highest coefficient is always assumed to  $a_m = 1$. 
 +
 
 +
 
 +
One refers to  $m$  as the  "degree"  of the polynomial.  
 +
 
 +
Adjacent ten polynomials are given where the polynomial degree is either 
 +
*$m = 2$  (red font), 
 +
*$m = 3$  (blue font)  or 
 +
*$m = 4$  (green font).
  
Ein Polynom $a(x)$ bezeichnet man als <span style="color: rgb(204, 0, 0);"><b>reduzibel</b></span>, wenn es als Produkt zweier Polynome $p(x)$ und $q(x)$ mit jeweils niedrigerem Grad dargestellt werden kann:
+
 
 +
A polynomial&nbsp; $a(x)$&nbsp; is called&nbsp; <b>reducible</b>&nbsp; if it can be represented as the product of two polynomials&nbsp; $p(x)$&nbsp; and&nbsp; $q(x)$&nbsp; of lower degree:
 
:$$a(x) = p(x) \cdot q(x)$$
 
:$$a(x) = p(x) \cdot q(x)$$
  
Ist dies nicht möglich, das heißt, wenn für das Polynom
+
If this splitting is not possible,&nbsp; that is,&nbsp; if for the polynomial
 
:$$a(x) = p(x) \cdot q(x) + r(x)$$
 
:$$a(x) = p(x) \cdot q(x) + r(x)$$
  
mit einem Restpolynom $r(x) &ne; 0$ gilt, so nennt an das Polynom <span style="color: rgb(204, 0, 0);"><b>irreduzibel</b></span>. Solche irreduziblen Polynome sind für die Beschreibung von Fehlerkorrekturverfahren von besonderer Bedeutung.
+
with a residual polynomial&nbsp; $r(x) &ne; 0$&nbsp; holds,&nbsp; then the polynomial is called&nbsp; '''irreducible'''.&nbsp; Such irreducible polynomials are of special importance for the description of error correction methods.
  
Der Nachweis, dass ein Polynom $a(x)$ vom Grad $m$ irreduzibel ist, erfordert mehrere Polynomdivisionen $a(x)/q(x)$, wobei der Grad des jeweiligen Divisorpolynoms $q(x)$ stets kleiner ist als $m$. Nur wenn alle diese Modulo&ndash;$2$&ndash;Divisionen stets einen Rest $r(x) &ne; 0$ liefern, ist nachgewiesen, dass $a(x)$ ein irreduzibles Polynom beschreibt.
+
&rArr; &nbsp; The proof that a polynomial&nbsp; $a(x)$&nbsp; of degree&nbsp; $m$&nbsp; is irreducible requires several polynomial divisions&nbsp; $a(x)/q(x)$,&nbsp; where the degree of the respective divisor polynomial&nbsp; $q(x)$&nbsp; is always smaller than&nbsp; $m$. &nbsp; Only if all these  divisions&nbsp; $($modulo $2)$&nbsp; always yield a remainder&nbsp; $r(x) &ne; 0$&nbsp; it is proved that&nbsp; $a(x)$&nbsp; is indeed an irreducible polynomial.
  
Dieser exakte Nachweis ist sehr aufwändig. Notwendige Voraussetzungen dafür, dass $a(x)$ überhaupt ein irreduzibles Polynom sein könnte, sind die beiden Bedingungen (bei nichtbinärer Betrachtungsweise wäre &bdquo;$=1$&rdquo; durch &bdquo;$&ne;0$&rdquo; zu ersetzen):
+
&rArr; &nbsp; This exact proof is very complex.&nbsp; Necessary conditions for&nbsp; $a(x)$&nbsp; to be an irreducible polynomial at all are the two conditions&nbsp; $($in nonbinary approach&nbsp; "$x=1$"&nbsp; would have to be replaced by&nbsp; "$x&ne;0$"$)$:
 
* $a(x = 0) = 1$,
 
* $a(x = 0) = 1$,
 +
 
* $a(x = 1) = 1$.
 
* $a(x = 1) = 1$.
  
  
Ansonsten könnte man für das zu untersuchende Polynom schreiben:
+
Otherwise,&nbsp; one could write for the polynomial under investigation:
:$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm bzw.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$
+
:$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm resp.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$
  
Die oben genannten Voraussetzungen sind zwar notwendig, jedoch nicht hinreichend, wie das folgende Beispiel zeigt:
+
The above conditions are necessary,&nbsp; but not sufficient,&nbsp; as the following example shows:
 
:$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1
 
:$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Trotzdem ist dieses Polynom reduzibel:
+
Nevertheless,&nbsp; this polynomial is reducible:
 
:$$a(x) = (x^3 + x +1)(x^2 + x +1) \hspace{0.05cm}.$$
 
:$$a(x) = (x^3 + x +1)(x^2 + x +1) \hspace{0.05cm}.$$
  
''Hinweis:''
 
* Die Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Erweiterungsk%C3%B6rper| Erweiterungskörper]]
 
  
  
 +
Hint:&nbsp; This exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension field"]].
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{How many polynomial divisions&nbsp; $(N_{\rm D})$&nbsp; are required to prove exactly that a&nbsp; ${\rm GF}(2)$ polynomial&nbsp; $a(x)$&nbsp; of degree&nbsp; $m$&nbsp; is irreducible?
 +
|type="{}"}
 +
$m = 2 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 2 3% }
 +
$m = 3 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 6 3% }
 +
$m = 4 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ ${ 14 3% }
 +
 
 +
{Which of the degree&ndash;2 polynomials are irreducible?
 
|type="[]"}
 
|type="[]"}
+ correct
+
- $a_1(x) = x^2 + x$,
- false
+
+ $a_2(x) = x^2 + x + 1$.
  
{Input-Box Frage
+
{Which of the degree&ndash;3 polynomials are irreducible?
|type="{}"}
+
|type="[]"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
- $a_3(x) = x^3$,
 +
- $a_4(x) = x^3 + 1$,
 +
- $a_5(x) = x^3 + x$,
 +
+ $a_6(x) = x^3 + x + 1$,
 +
+ $a_7(x) = x^3 + x^2 + 1$.
 +
 
 +
{Which of the degree&ndash;4 polynomials are irreducible?
 +
|type="[]"}
 +
- $a_8(x) = x^4 + 1$,
 +
+ $a_9(x) = x^4 + x^3 + 1$,
 +
- $a_{10}(x) = x^4 + x^2 + 1$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The polynomial&nbsp; $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$
'''(2)'''&nbsp;  
+
*with&nbsp; $a_m = 1$
'''(3)'''&nbsp;  
+
'''(4)'''&nbsp;  
+
*and given coefficients&nbsp; $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$&nbsp; $(0$&nbsp; or&nbsp; $1$&nbsp; in each case$)$
'''(5)'''&nbsp;  
+
 
 +
 
 +
is irreducible if there is no single polynomial&nbsp; $q(x)$&nbsp; such that the modulo&nbsp; $2$&nbsp; division&nbsp; $a(x)/q(x)$&nbsp; yields no remainder.&nbsp; The degree of all divisor polynomials&nbsp; $q(x)$&nbsp; to be considered is at least&nbsp; $1$&nbsp; and at most&nbsp; $m-1$.
 +
* For&nbsp; $m = 2$&nbsp; two polynomial divisions&nbsp; $a(x)/q_i(x)$&nbsp; are necessary,&nbsp; namely with
 +
:$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1
 +
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2}
 +
\hspace{0.05cm}.$$
 +
* For&nbsp; $m = 3$&nbsp; there are already&nbsp; $N_{\rm D} \ \underline{= 6}$&nbsp; divisor polynomials,&nbsp; namely besides&nbsp; $q_1(x) = x$&nbsp; and&nbsp; $q_2(x) = x + 1$&nbsp; also
 +
:$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm}
 +
q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
 +
 
 +
* For&nbsp; $m = 4$,&nbsp; besides&nbsp; $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$&nbsp; all possible divisor polynomials with degree&nbsp; $m = 3$&nbsp; must also be considered,&nbsp; thus:
 +
:$$q_i(x) =  a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\}
 +
\hspace{0.05cm}.$$
 +
 
 +
:For the index, $7 &#8804; i &#8804; 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.
 +
 
 +
 
 +
'''(2)'''&nbsp; For the first polynomial holds:&nbsp; $a_1(x = 0) = 0$.&nbsp; Therefore this polynomial is reducible:
 +
:$$a_1(x) = x \cdot (x + 1).$$
 +
 
 +
On the other hand,&nbsp; the following is true for the second polynomial:
 +
:$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1
 +
\hspace{0.05cm}.$$
 +
 
 +
This necessary but not sufficient property shows that&nbsp; $a_2(x)$&nbsp; could be irreducible.&nbsp; The final proof is obtained only by two modulo-2 divisions:
 +
* $a_2(x)$&nbsp; divided by&nbsp; $x$&nbsp; yields&nbsp; $x + 1$,&nbsp; remainder&nbsp; $r(x) = 1$,
 +
 
 +
* $a_2(x)$&nbsp; divided by&nbsp; $x + 1$&nbsp; yields&nbsp; $x$,&nbsp; remainder $r(x) = 1$.
 +
 
 +
 
 +
The correct solution is therefore the&nbsp; <u>proposed solution 2</u>.
 +
 
 +
 
 +
'''(3)'''&nbsp; The first three polynomials are reducible,&nbsp; as the following calculation results show:
 +
:$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0
 +
\hspace{0.05cm}.$$
 +
 
 +
This could have been found out by thinking:
 +
:$$a_3(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
 +
:$$a_4(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
 +
:$$a_5(x)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$
 +
 
 +
The polynomial&nbsp; $a_6(x)$&nbsp; is not equal to&nbsp; $0$&nbsp; for both&nbsp; $x = 0$&nbsp; and&nbsp; $x = 1$&nbsp;. This means that
 +
* "nothing speaks against"&nbsp; $a_6(x)$&nbsp; being irreducible,
 +
* division by the irreducible degree-1 polynomials&nbsp; $x$&nbsp; and&nbsp; $x + 1$,&nbsp; respectively,&nbsp; is not possible without remainder.
 +
 
 +
 
 +
However,&nbsp; since division by the single irreducible degree-2 polynomial also yields a remainder,&nbsp; it is proved that&nbsp; $a_6(x)$&nbsp; is an irreducible polynomial:
 +
:$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$
 +
 
 +
Using the same computational procedure,&nbsp; it can also be shown that&nbsp; $a_7(x)$&nbsp; is also irreducible &nbsp; &#8658; &nbsp; <u>Solutions 4 and 5</u>.
 +
 
 +
 
 +
'''(4)'''&nbsp; From&nbsp; $a_8(x + 1) = 0$&nbsp; follows the reducibility of&nbsp; $a_8(x)$.&nbsp; For the other two polynomials,&nbsp; however,&nbsp; holds:
 +
:$$a_9(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1  \hspace{0.05cm},$$
 +
:$$a_{10}(x = 0)  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1  \hspace{0.05cm}.$$
 +
 
 +
So both could be irreducible.&nbsp; The exact proof of irreducibility is more complicated:
 +
*It is not necessary to use all four divisor polynomials with degree&nbsp; $m = 2$,&nbsp; namely $x^2, \ x^2 + 1, \ x^2 + x + 1$,&nbsp; but it is sufficient to divide by the only irreducible degree-2 polynomial.&nbsp; One obtains with respect to the polynomial&nbsp; $a_9(x)$:
 +
:$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$
 +
 
 +
Also the division by the two irreducible degree-3 polynomials yields a remainder in each case:
 +
:$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
 +
:$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x  \hspace{0.05cm},\hspace{0.95cm}{\rm remainder}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$
 +
 
 +
Finally,&nbsp; let us consider the polynomial&nbsp; $a_{10}(x) = x^4 + x^2 + 1$.&nbsp; Here holds
 +
:$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$
 +
 
 +
It follows:&nbsp; Only the polynomial&nbsp; $a_9(x)$&nbsp; is irreducible &nbsp; &#8658; &nbsp; <u>proposed solution 2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.2 Erweiterungskörper^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 17:14, 29 September 2022

Polynomials of degree  $m = 2$,  $m = 3$,  $m = 4$

Important prerequisites for understanding channel coding are knowledge of polynomial properties.

In this exercise we consider polynomials of the form

$$a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m} \hspace{0.05cm},$$
  • where for the coefficients  $a_i ∈ {\rm GF}(2) = \{0, \, 1\}$  holds  $(0 ≤ i ≤ m)$
  • and the highest coefficient is always assumed to  $a_m = 1$. 


One refers to  $m$  as the  "degree"  of the polynomial.

Adjacent ten polynomials are given where the polynomial degree is either 

  • $m = 2$  (red font), 
  • $m = 3$  (blue font)  or 
  • $m = 4$  (green font).


A polynomial  $a(x)$  is called  reducible  if it can be represented as the product of two polynomials  $p(x)$  and  $q(x)$  of lower degree:

$$a(x) = p(x) \cdot q(x)$$

If this splitting is not possible,  that is,  if for the polynomial

$$a(x) = p(x) \cdot q(x) + r(x)$$

with a residual polynomial  $r(x) ≠ 0$  holds,  then the polynomial is called  irreducible.  Such irreducible polynomials are of special importance for the description of error correction methods.

⇒   The proof that a polynomial  $a(x)$  of degree  $m$  is irreducible requires several polynomial divisions  $a(x)/q(x)$,  where the degree of the respective divisor polynomial  $q(x)$  is always smaller than  $m$.   Only if all these divisions  $($modulo $2)$  always yield a remainder  $r(x) ≠ 0$  it is proved that  $a(x)$  is indeed an irreducible polynomial.

⇒   This exact proof is very complex.  Necessary conditions for  $a(x)$  to be an irreducible polynomial at all are the two conditions  $($in nonbinary approach  "$x=1$"  would have to be replaced by  "$x≠0$"$)$:

  • $a(x = 0) = 1$,
  • $a(x = 1) = 1$.


Otherwise,  one could write for the polynomial under investigation:

$$a(x) = q(x) \cdot x \hspace{0.5cm}{\rm resp.}\hspace{0.5cm}a(x) = q(x) \cdot (x+1)\hspace{0.05cm}.$$

The above conditions are necessary,  but not sufficient,  as the following example shows:

$$a(x) = x^5 + x^4 +1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}a(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a(x = 1) = 1 \hspace{0.05cm}.$$

Nevertheless,  this polynomial is reducible:

$$a(x) = (x^3 + x +1)(x^2 + x +1) \hspace{0.05cm}.$$


Hint:  This exercise belongs to the chapter  "Extension field".


Questions

1

How many polynomial divisions  $(N_{\rm D})$  are required to prove exactly that a  ${\rm GF}(2)$ polynomial  $a(x)$  of degree  $m$  is irreducible?

$m = 2 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

$m = 3 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

$m = 4 \text{:} \hspace{0.35cm} N_{\rm D} \ = \ $

2

Which of the degree–2 polynomials are irreducible?

$a_1(x) = x^2 + x$,
$a_2(x) = x^2 + x + 1$.

3

Which of the degree–3 polynomials are irreducible?

$a_3(x) = x^3$,
$a_4(x) = x^3 + 1$,
$a_5(x) = x^3 + x$,
$a_6(x) = x^3 + x + 1$,
$a_7(x) = x^3 + x^2 + 1$.

4

Which of the degree–4 polynomials are irreducible?

$a_8(x) = x^4 + 1$,
$a_9(x) = x^4 + x^3 + 1$,
$a_{10}(x) = x^4 + x^2 + 1$.


Solution

(1)  The polynomial  $a(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \hspace{0.1cm}... \hspace{0.1cm} + a_m \cdot x^{m}$

  • with  $a_m = 1$
  • and given coefficients  $a_0, \ a_1, \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ a_{m-1}$  $(0$  or  $1$  in each case$)$


is irreducible if there is no single polynomial  $q(x)$  such that the modulo  $2$  division  $a(x)/q(x)$  yields no remainder.  The degree of all divisor polynomials  $q(x)$  to be considered is at least  $1$  and at most  $m-1$.

  • For  $m = 2$  two polynomial divisions  $a(x)/q_i(x)$  are necessary,  namely with
$$q_1(x) = x \hspace{0.5cm}{\rm and}\hspace{0.5cm}q_2(x) = x+1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}N_{\rm D}\hspace{0.15cm}\underline{= 2} \hspace{0.05cm}.$$
  • For  $m = 3$  there are already  $N_{\rm D} \ \underline{= 6}$  divisor polynomials,  namely besides  $q_1(x) = x$  and  $q_2(x) = x + 1$  also
$$q_3(x) = x^2\hspace{0.05cm},\hspace{0.2cm}q_4(x) = x^2+1\hspace{0.05cm},\hspace{0.2cm} q_5(x) = x^2 + x\hspace{0.05cm},\hspace{0.2cm}q_6(x) = x^2+x+1\hspace{0.05cm}.$$
  • For  $m = 4$,  besides  $q_1(x), \hspace{0.05cm}\text{ ...} \hspace{0.1cm} , \ q_6(x)$  all possible divisor polynomials with degree  $m = 3$  must also be considered,  thus:
$$q_i(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + x^3\hspace{0.05cm},\hspace{0.5cm}a_0, a_1, a_2 \in \{0,1\} \hspace{0.05cm}.$$
For the index, $7 ≤ i ≤ 14 \ \Rightarrow \ N_{\rm D} \ \underline{= 14}$.


(2)  For the first polynomial holds:  $a_1(x = 0) = 0$.  Therefore this polynomial is reducible:

$$a_1(x) = x \cdot (x + 1).$$

On the other hand,  the following is true for the second polynomial:

$$a_2(x = 0) = 1\hspace{0.05cm},\hspace{0.2cm}a_2(x = 1) = 1 \hspace{0.05cm}.$$

This necessary but not sufficient property shows that  $a_2(x)$  could be irreducible.  The final proof is obtained only by two modulo-2 divisions:

  • $a_2(x)$  divided by  $x$  yields  $x + 1$,  remainder  $r(x) = 1$,
  • $a_2(x)$  divided by  $x + 1$  yields  $x$,  remainder $r(x) = 1$.


The correct solution is therefore the  proposed solution 2.


(3)  The first three polynomials are reducible,  as the following calculation results show:

$$a_3(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_4(x = 1) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 0) = 0\hspace{0.05cm},\hspace{0.2cm}a_5(x = 1) = 0 \hspace{0.05cm}.$$

This could have been found out by thinking:

$$a_3(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot x \cdot x \hspace{0.05cm},$$
$$a_4(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (x^2 + x + 1)\cdot(x + 1) \hspace{0.05cm},$$
$$a_5(x) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \cdot (x + 1)\cdot(x + 1) \hspace{0.05cm}.$$

The polynomial  $a_6(x)$  is not equal to  $0$  for both  $x = 0$  and  $x = 1$ . This means that

  • "nothing speaks against"  $a_6(x)$  being irreducible,
  • division by the irreducible degree-1 polynomials  $x$  and  $x + 1$,  respectively,  is not possible without remainder.


However,  since division by the single irreducible degree-2 polynomial also yields a remainder,  it is proved that  $a_6(x)$  is an irreducible polynomial:

$$(x^3 + x+1)/(x^2 + x+1) = x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm Rest}\hspace{0.15cm} r(x) = x\hspace{0.05cm},$$

Using the same computational procedure,  it can also be shown that  $a_7(x)$  is also irreducible   ⇒   Solutions 4 and 5.


(4)  From  $a_8(x + 1) = 0$  follows the reducibility of  $a_8(x)$.  For the other two polynomials,  however,  holds:

$$a_9(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1\hspace{0.05cm},\hspace{0.35cm}a_9(x = 1) = 1 \hspace{0.05cm},$$
$$a_{10}(x = 0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1\hspace{0.05cm},\hspace{0.2cm}a_{10}(x = 1) = 1 \hspace{0.05cm}.$$

So both could be irreducible.  The exact proof of irreducibility is more complicated:

  • It is not necessary to use all four divisor polynomials with degree  $m = 2$,  namely $x^2, \ x^2 + 1, \ x^2 + x + 1$,  but it is sufficient to divide by the only irreducible degree-2 polynomial.  One obtains with respect to the polynomial  $a_9(x)$:
$$(x^4 + x^3+1)/(x^2 + x+1) = x^2 + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x\hspace{0.05cm}.$$

Also the division by the two irreducible degree-3 polynomials yields a remainder in each case:

$$(x^4 + x^3+1)/(x^3 + x+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x + 1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = x^2\hspace{0.05cm},$$
$$(x^4 + x^3+1)/(x^3 + x^2+1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} x \hspace{0.05cm},\hspace{0.95cm}{\rm remainder}\hspace{0.15cm} r(x) = x +1\hspace{0.05cm}.$$

Finally,  let us consider the polynomial  $a_{10}(x) = x^4 + x^2 + 1$.  Here holds

$$(x^4 + x^2+1)/(x^2 + x+1) = x^2 + x+1 \hspace{0.05cm},\hspace{0.4cm}{\rm remainder}\hspace{0.15cm} r(x) = 0\hspace{0.05cm}.$$

It follows:  Only the polynomial  $a_9(x)$  is irreducible   ⇒   proposed solution 2.