Difference between revisions of "Aufgaben:Exercise 2.3: Sinusoidal Characteristic"

From LNTwww
 
(34 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion
 
}}
 
}}
  
[[File:P_ID894__LZI_A_2_3.png|right|Sinusförmige Kennlinie]]
+
[[File:P_ID894__LZI_A_2_3.png|right|frame|Sinusoidal characteristic curve]]
Wie betrachten ein System mit Eingang $x(t)$ und Ausgang $y(t)$. Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet.
+
We consider a system with input  $x(t)$  and output  $y(t)$.  For simplicity of description, the signals are considered to be dimensionless.
  
Der Zusammenhang zwischen dem Eingangssignal $x(t)$ und dem Ausgangssignal $y(t)$ ist im Bereich zwischen $-\pi/2$ und $+\pi/2$ durch die folgende Kennlinie gegeben.
+
The relationship between the input signal  $x(t)$  and the output signal  $y(t)$  is given by the following characteristic curve in the range between  $-\pi/2$  and  $+\pi/2$:
$$g(x) =  \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} -
+
:$$g(x) =  \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} -
  \hspace{0.05cm}...$$
+
  \hspace{0.05cm}\text{...}$$
  
Der zweite Teil dieser Gleichung beschreibt dabei die Reihenentwicklung der Sinusfunktion. Als Näherungen für die nichtlineare Kennlinie werden in dieser Aufgabe verwendet:
+
The second part of this equation describes the series expansion of the sine function.  
$$g_1(x) = x\hspace{0.05cm},$$
 
$$ g_3(x) = x-{x^3}/{6}\hspace{0.05cm},$$
 
$$g_5(x) = x-{x^3}/{6}+/{120}\hspace{0.05cm}.$$
 
  
Es wird stets das Eingangssignal $x(t) = A \cdot \cos(\omega_0 \cdot t)$ vorausgesetzt, wobei für die (dimensionslose) Signalamplitude die Werte $A = 0.5$, $A = 1.0$ und $A = 1.5$ zu betrachten sind.
+
As approximations for the nonlinear characteristic curve the following is used in this task:
 +
:$$g_1(x) = x\hspace{0.05cm},$$
 +
:$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
 +
:$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$
  
''Hinweise:''
+
*The input signal  $x(t) = A \cdot \cos(\omega_0 \cdot t)$  is always assumed. 
*Die Aufgabe bezieht sich auf das Kapitel  [[Lineare_zeitinvariante_Systeme/Klassifizierung_der_Verzerrungen|Klassifizierung der Verzerrungen]].
+
*The values  $A = 0.5$,  $A = 1.0$  and  $A = 1.5$  are to be considered for the (dimensionless) signal amplitude.
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Alle hier abgefragten Leistungen beziehen sich auf den Widerstand $R = 1 \ \rm \Omega$ und haben somit die Einheit ${\rm V}^2$
 
*Die Leistung eines Signals $x(t)$ kann auch aus der Spektralfunktion $X(f)$ berechnet werden:
 
:$$P_{x}  =\frac{1}{T_{\rm 0}} \cdot\int_{-\infty}^{  \infty}
 
x^2(t)\hspace{0.1cm}{\rm d}t
 
= \frac{1}{T_{\rm 0}} \cdot \int_{-\infty}^{  \infty}
 
|X(f)|^2\hspace{0.1cm}{\rm d}f.$$
 
  
:<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.2. Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
 
:$$\cos^3(\alpha) =  \frac{3}{4} \cdot \cos(\alpha) + \frac{1}{4} \cdot \cos(3\alpha)
 
\hspace{0.05cm}, \\
 
\cos^5(\alpha) =  \frac{10}{16} \cdot \cos(\alpha) + \frac{5}{16} \cdot \cos(3\alpha)
 
+ \frac{1}{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$
 
  
:Die sich ergebenden Signalverläufe <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) sind für die Parametersätze dieses Beispiels auf der Seite Beschreibung nichtlinearer Systeme (2) grafisch dargestellt.
 
  
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
''Please note:''
 +
*The task belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 +
*The resulting signal curves for&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are shown graphically on the page&nbsp; [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion#Description_of_nonlinear_systems|Description of nonlinear systems]]&nbsp;.
 +
*All powers required here refer to the resistance&nbsp; $R = 1 \ \rm \Omega$&nbsp; and thus have the unit&nbsp; ${\rm V}^2$.
 +
*The following trigonometric relations are assumed to be known:
 +
:$$\cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha)
 +
\hspace{0.05cm}, $$
 +
:$$ \cos^5(\alpha) = {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha)
 +
+ {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Klirrfaktor erhält man mit der Kennliniennäherung <i>g</i><sub>1</sub>(<i>x</i>) unabhängig von der Amplitude <i>A</i> des Eingangssignals?
+
{What distortion factor&nbsp; $K$&nbsp; is obtained with the approximation&nbsp; $\underline{g_1(x)}$&nbsp; of the characteristic curve independent of the amplitude&nbsp; $A$&nbsp; of the input signal?
 
|type="{}"}
 
|type="{}"}
$g_1(x):\ \ K$ = { 0 3% }
+
$K \ = \ $ { 0. } $\ \%$
  
  
{Berechnen Sie den Klirrfaktor für das Eingangssignal <i>x</i>(<i>t</i>) = <i>A</i> &middot; cos(<i>&omega;</i><sub>0</sub> &middot; <i>t</i>) und die Näherung <i>g</i><sub>3</sub>(<i>x</i>). Welche Werte ergeben sich für <i>A</i> = 0.5 und <i>A</i> = 1.0?
+
{Compute the distortion factor&nbsp; $K$&nbsp; for the input signal&nbsp; $x(t) = A \cdot \cos(\omega_0 \cdot t)$&nbsp; and the approximation&nbsp; $\underline{g_3(x)}$. <br>What values arise as a result for&nbsp; $A = 0.5$&nbsp; and&nbsp; $A = 1.0$?
 
|type="{}"}
 
|type="{}"}
$g_3(x),\ A = 0.5:\ \ K$ = { 1.08 3% } %
+
$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ $ { 1.08 3% } $\ \%$
$g_3(x),\ A = 1.0:\ \ K$ = { 4.76 3% } %
+
$A = 1.0\hspace{-0.08cm}:\ \ K \ =  \ $ { 4.76 3% } $\ \%$
  
  
{Wie lautet der Klirrfaktor für <i>A</i> = 1 unter Berücksichtigung der Näherung <i>g</i><sub>5</sub>(<i>x</i>).
+
{What is the distortion factor for&nbsp; $\underline{A = 1.0}$&nbsp; considering the approximation&nbsp;  $\underline{g_5(x)}$?
 
|type="{}"}
 
|type="{}"}
$g_5(x),\ A = 1.0:\ \ K$ = { 4.45 3% } %
+
$K \ = \ $ { 4.45 3% } $\ \%$
  
  
{Welche der folgenden Aussagen treffen zu? <i>K</i> bezeichnet den Klirrfaktor der Sinusfunktion <i>g</i>(<i>x</i>); <i>K</i><sub><i>g</i>3</sub> und <i>K</i><sub><i>g</i>5</sub> basieren auf den Näherungen <i>g</i><sub>3</sub>(<i>x</i>) und <i>g</i><sub>5</sub>(<i>x</i>).
+
{Which of the following statements are true?&nbsp; Here,&nbsp; $K$&nbsp; denotes the distortion factor of the sine function&nbsp; $g(x)$. <br>$K_{\rm g3}$&nbsp; and&nbsp; $K_{\rm g5}$&nbsp; are based on the approximations&nbsp; $g_3(x)$&nbsp; and&nbsp; $g_5(x)$, respectively.
 
|type="[]"}
 
|type="[]"}
+ <i>K</i><sub><i>g</i>5</sub> stellt im Allgemeinen eine bessere Näherung für <i>K</i> dar als <i>K</i><sub><i>g</i>3</sub>.
+
+ $K_{\rm g5}$&nbsp; generally represents a better approximation for&nbsp; $K$&nbsp; than&nbsp; $K_{\rm g3}$.
- Für <i>A</i> = 1 ist <i>K</i><sub><i>g</i>3</sub> kleiner als <i>K</i><sub><i>g</i>5</sub>.
+
- $K_{\rm g3} < K_{\rm g5}$ holds for&nbsp; $A = 1.0$.
+ Für <i>A</i> = 0.5 wird <i>K</i><sub><i>g</i>3</sub> &asymp; <i>K</i><sub><i>g</i>5</sub> gelten.
+
+ $K_{\rm g3} \approx K_{\rm g5}$ will hold for&nbsp; $A = 0.5$.
  
  
Line 66: Line 68:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die sehr ungenaue Näherung <i>g</i><sub>1</sub>(<i>x</i>) = <i>x</i> ist linear in <i>x</i> und führt deshalb auch nicht zu nichtlinearen Verzerrungen. Damit ergibt sich der Klirrfaktor <u><i>K</i> = 0</u>.
+
'''(1)'''&nbsp; The very inaccurate approximation&nbsp; $g_1(x) = x$&nbsp; is linear in&nbsp; $x$&nbsp; and therefore does not result in nonlinear distortions. Hence, the distortion factor is $\underline{K = 0}$.
 +
 
  
:<b>2.</b>&nbsp;&nbsp;Das analytische Spektrum (nur positive Frequenzen) des Eingangssignals lautet:
+
 
 +
'''(2)'''&nbsp; The analytical spectrum&nbsp; (positive frequencies only)&nbsp; of the input signal is:
 
:$$X_+(f) = A  \cdot {\rm \delta}(f- f_0) .$$
 
:$$X_+(f) = A  \cdot {\rm \delta}(f- f_0) .$$
  
:Am Ausgang der nichtlinearen Kennlinie <i>g</i><sub>3</sub>(<i>x</i>) liegt dann folgendes Signal an:
+
*Then, the following signal is applied to the output of the nonlinear characteristic curve&nbsp; $g_3(x)$&nbsp;:
 
:$$y(t) = A \cdot {\rm cos}(\omega_0  t ) - \frac{A^3}{6} \cdot
 
:$$y(t) = A \cdot {\rm cos}(\omega_0  t ) - \frac{A^3}{6} \cdot
 
{\rm cos}^3(\omega_0  t )=
 
{\rm cos}^3(\omega_0  t )=
\\ = A \cdot {\rm cos}(\omega_0  t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot
+
A \cdot {\rm cos}(\omega_0  t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot
 
{\rm cos}(\omega_0  t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot
 
{\rm cos}(\omega_0  t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot
{\rm cos}(3\omega_0  t ) = \\ = A_1 \cdot {\rm cos}(\omega_0  t )
+
{\rm cos}(3\omega_0  t ) = A_1 \cdot {\rm cos}(\omega_0  t )
 
+ A_3 \cdot {\rm cos}(3\omega_0  t ).$$
 
+ A_3 \cdot {\rm cos}(3\omega_0  t ).$$
  
:Für die Koeffizienten <i>A</i><sub>1</sub> und <i>A</i><sub>3</sub> erhält man durch Koeffizientenvergleich:
+
*For the coefficients&nbsp; $A_1$&nbsp; and $A_3$ the following is obtained by comparison of coefficients:
:$$A_1 = A  - \frac{A^3}{8},  \hspace{0.5cm}A_3 =  - \frac{A^3}{24}.$$
+
:$$A_1 = A  - {A^3}\hspace{-0.1cm}/{8},  \hspace{0.5cm}A_3 =  - {A^3}\hspace{-0.1cm}/{24}.$$
 +
 
 +
*Using&nbsp; $A = 0.5$&nbsp; the following is obtained:&nbsp; $A_1 \approx 0.484$&nbsp; and&nbsp; $A_3 \approx 0.005$.&nbsp; Thus, the distortion factor is:
 +
:$$K = K_3 ={|A_3|}/{A_1}= {0.005}/{0.484} \hspace{0.15cm}\underline{ =  1.08\%}.$$
  
:Mit <i>A</i> = 0.5 ergibt sich <i>A</i><sub>1</sub> &asymp; 0.484 und <i>A</i><sub>3</sub> &asymp; 0.005. Somit lautet der Klirrfaktor:
+
:Note that for the approximation&nbsp; $g_3(x)$&nbsp; only the cubic part&nbsp; $K_3$&nbsp; of the distortion factor is effective.  
:$$K = K_3 = \frac{|A_3|}{A_1}= \frac{0.005}{0.484} \hspace{0.15cm}\underline{ =  1.08\%}.$$
 
  
:Anzumerken ist, dass bei der Näherung <i>g</i><sub>3</sub>(<i>x</i>) nur der kubische Anteil <i>K</i><sub>3</sub> des Klirrfaktors wirksam ist. Für <i>A</i> = 1 und <i>A</i> = 1.5 ergeben sich folgende Zahlenwerte:
+
*For&nbsp; $A = 1.0$&nbsp; and&nbsp; $A = 1.5$&nbsp; the following numerical values:
 
:$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx
 
:$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx
-0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%},$$
+
-0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$
 
:$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx
 
:$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx
 
-0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$
 
-0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$
  
:<b>3.</b>&nbsp;&nbsp;In ähnlicher Weise wie beim Unterpunkt 2) gilt nun
+
 
 +
 
 +
'''(3)'''&nbsp; Similarly as in subtask&nbsp; '''(2)''',&nbsp;
 
:$$y(t) = A_1 \cdot {\rm cos}(\omega_0  t ) + A_3 \cdot {\rm
 
:$$y(t) = A_1 \cdot {\rm cos}(\omega_0  t ) + A_3 \cdot {\rm
cos}(3\omega_0  t )+ A_5 \cdot {\rm cos}(5\omega_0  t )$$
+
cos}(3\omega_0  t )+ A_5 \cdot {\rm cos}(5\omega_0  t )$$  
  
:mit folgenden Koeffizienten:
+
:holds with the following coefficients:
:$$A_1 = A  - \frac{A^3}{8} + \frac{A^5}{192},\hspace{0.3cm}
+
:$$A_1 = A  - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm}
A_3 =  - \frac{A^3}{24} + \frac{A^5}{384},\hspace{0.3cm}
+
A_3 =  - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm}
A_5 = \frac{A^5}{1920}.$$
+
A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$
  
:Daraus ergeben sich mit <i>A</i> = 1 die Zahlenwerte:
+
*From this, the following numerical values arise a result with&nbsp; $A=1$&nbsp;:
 
:$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm}
 
:$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm}
 
A_3 \approx  -0.042 +0.003 = -0.039,\hspace{0.3cm}
 
A_3 \approx  -0.042 +0.003 = -0.039,\hspace{0.3cm}
 
A_5 \approx 0.0005$$
 
A_5 \approx 0.0005$$
:$$\Rightarrow \hspace{0.3cm}K_3 = \frac{|A_3|}{A_1}= 0.0443,\hspace{0.3cm}K_5 =
+
:$$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 =
\frac{|A_5|}{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2}  \hspace{0.15cm}\underline{\approx 4.45\%}.$$
+
{|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2}  \hspace{0.15cm}\underline{\approx 4.45\%}
 
+
\; \; \Rightarrow \; \; K_{g5}.$$
:<b>4.</b>&nbsp;&nbsp;Der Ansatz <i>g</i><sub>5</sub>(<i>x</i>) ist im gesamten Bereich eine bessere Näherung für die Sinusfunktion <i>g</i>(<i>x</i>) als die Näherung <i>g</i><sub>3</sub>(<i>x</i>). Deshalb ist der in der Teilaufgabe c) berechnete Wert <i>K</i><sub>c</sub> eine bessere Näherung für den tatsächlichen Klirrfaktor <i>K</i> als <i>K<sub>b</sub></i> &ndash; die erste Aussage ist somit richtig.
 
  
:Dagegen ist die zweite Aussage falsch, wie schon die Berechnung gezeigt hat <i>K<sub>b</sub></i> = 4.76 % ist größer als <i>K<sub>c</sub></i>  = 4.45 %. Der Grund hierfür ist, dass <i>g</i><sub>3</sub>(<i>x</i>) unterhalb von <i>g</i><sub>5</sub>(<i>x</i>) liegt und damit auch eine größere Abweichung vom linearen Verlauf vorliegt.
 
  
:Für <i>A</i> = 0.5 wird <i>K<sub>c</sub></i> &asymp; <i>K<sub>b</sub></i> gelten. Schon die Kennlinie auf der Angabenseite zeigt, dass für |<i>x</i>| &#8804; 0.5 die beiden Funktionen <i>g</i><sub>3</sub>(<i>x</i>) und <i>g</i><sub>5</sub>(<i>x</i>) innerhalb der Zeichengenauigkeit nicht zu unterscheiden sind. Damit ergeben sich auch gleiche Klirrfaktoren. Richtig sind also die <u>Lösungsvorschläge 1 und 3</u>
+
'''(4)'''&nbsp; <u>Approaches 1 and 3</u>&nbsp; are correct:
 +
*The approach&nbsp; $g_5(x)$&nbsp; is a better approximation for the sine function&nbsp; $g(x)$&nbsp; than the approximation&nbsp; $g_3(x)$ in the entire domain.
 +
*Thus, the value&nbsp; $K_{g5}$&nbsp; computed in the subtask&nbsp; '''(3)'''&nbsp; is a better approximation for the actual distortion factor than&nbsp; $K_{g3}$. <br>Therefore, the first statement is correct.
 +
*The second statement is false as already shown by the computation for&nbsp; $A=1$&nbsp;: &nbsp; $K_{g3} \approx 4.76 \%$&nbsp; is greater than&nbsp; $K_{g5} \approx 4.45 \%$.
 +
*The reason for this is that&nbsp; $g_3(x)$&nbsp; is below&nbsp; $g_5(x)$&nbsp; and thus there is also a greater deviation from the linear curve.
 +
*For&nbsp; $A=0.5$&nbsp;,&nbsp; $K_{g5} \approx K_{g3} = 1.08 \%$&nbsp; will hold.  
 +
*The characteristic curve on the information page shows that for&nbsp; $|x| \le 0.5$&nbsp; the functions&nbsp; $g_3(x)$&nbsp; and&nbsp; $g_5(x)$&nbsp; are indistinguishable within the accuracy of drawing.  
 +
*This also results in&nbsp; (nearly)&nbsp; the same distortion factors.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 15:12, 29 September 2021

Sinusoidal characteristic curve

We consider a system with input  $x(t)$  and output  $y(t)$.  For simplicity of description, the signals are considered to be dimensionless.

The relationship between the input signal  $x(t)$  and the output signal  $y(t)$  is given by the following characteristic curve in the range between  $-\pi/2$  and  $+\pi/2$:

$$g(x) = \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \hspace{0.05cm}\text{...}$$

The second part of this equation describes the series expansion of the sine function.

As approximations for the nonlinear characteristic curve the following is used in this task:

$$g_1(x) = x\hspace{0.05cm},$$
$$ g_3(x) = x- x^{3}\hspace{-0.1cm}/6\hspace{0.05cm},$$
$$g_5(x) = x- x^3\hspace{-0.1cm}/{6}+x^5\hspace{-0.1cm}/{120}\hspace{0.05cm}.$$
  • The input signal  $x(t) = A \cdot \cos(\omega_0 \cdot t)$  is always assumed. 
  • The values  $A = 0.5$,  $A = 1.0$  and  $A = 1.5$  are to be considered for the (dimensionless) signal amplitude.





Please note:

  • The task belongs to the chapter  Nonlinear Distortions.
  • The resulting signal curves for  $x(t)$  and  $y(t)$  are shown graphically on the page  Description of nonlinear systems .
  • All powers required here refer to the resistance  $R = 1 \ \rm \Omega$  and thus have the unit  ${\rm V}^2$.
  • The following trigonometric relations are assumed to be known:
$$\cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}, $$
$$ \cos^5(\alpha) = {10}/{16} \cdot \cos(\alpha) + {5}/{16} \cdot \cos(3\alpha) + {1}/{16} \cdot \cos(5\alpha)\hspace{0.05cm}.$$


Questions

1

What distortion factor  $K$  is obtained with the approximation  $\underline{g_1(x)}$  of the characteristic curve independent of the amplitude  $A$  of the input signal?

$K \ = \ $

$\ \%$

2

Compute the distortion factor  $K$  for the input signal  $x(t) = A \cdot \cos(\omega_0 \cdot t)$  and the approximation  $\underline{g_3(x)}$.
What values arise as a result for  $A = 0.5$  and  $A = 1.0$?

$A = 0.5\hspace{-0.08cm}:\ \ K \ = \ $

$\ \%$
$A = 1.0\hspace{-0.08cm}:\ \ K \ = \ $

$\ \%$

3

What is the distortion factor for  $\underline{A = 1.0}$  considering the approximation  $\underline{g_5(x)}$?

$K \ = \ $

$\ \%$

4

Which of the following statements are true?  Here,  $K$  denotes the distortion factor of the sine function  $g(x)$.
$K_{\rm g3}$  and  $K_{\rm g5}$  are based on the approximations  $g_3(x)$  and  $g_5(x)$, respectively.

$K_{\rm g5}$  generally represents a better approximation for  $K$  than  $K_{\rm g3}$.
$K_{\rm g3} < K_{\rm g5}$ holds for  $A = 1.0$.
$K_{\rm g3} \approx K_{\rm g5}$ will hold for  $A = 0.5$.


Solution

(1)  The very inaccurate approximation  $g_1(x) = x$  is linear in  $x$  and therefore does not result in nonlinear distortions. Hence, the distortion factor is $\underline{K = 0}$.


(2)  The analytical spectrum  (positive frequencies only)  of the input signal is:

$$X_+(f) = A \cdot {\rm \delta}(f- f_0) .$$
  • Then, the following signal is applied to the output of the nonlinear characteristic curve  $g_3(x)$ :
$$y(t) = A \cdot {\rm cos}(\omega_0 t ) - \frac{A^3}{6} \cdot {\rm cos}^3(\omega_0 t )= A \cdot {\rm cos}(\omega_0 t ) - \frac{3}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(\omega_0 t )- \frac{1}{4} \cdot \frac{A^3}{6} \cdot {\rm cos}(3\omega_0 t ) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t ).$$
  • For the coefficients  $A_1$  and $A_3$ the following is obtained by comparison of coefficients:
$$A_1 = A - {A^3}\hspace{-0.1cm}/{8}, \hspace{0.5cm}A_3 = - {A^3}\hspace{-0.1cm}/{24}.$$
  • Using  $A = 0.5$  the following is obtained:  $A_1 \approx 0.484$  and  $A_3 \approx 0.005$.  Thus, the distortion factor is:
$$K = K_3 ={|A_3|}/{A_1}= {0.005}/{0.484} \hspace{0.15cm}\underline{ = 1.08\%}.$$
Note that for the approximation  $g_3(x)$  only the cubic part  $K_3$  of the distortion factor is effective.
  • For  $A = 1.0$  and  $A = 1.5$  the following numerical values:
$$A = 1.0: A_1 \approx 0.875, \hspace{0.2cm} A_3 \approx -0.041\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}\underline{K \approx 4.76\%}\; \; \Rightarrow \; \; K_{g3},$$
$$A = 1.5: A_1 \approx 1.078, \hspace{0.2cm} A_3 \approx -0.140\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \hspace{0.15cm}{K \approx 13 \%}.$$


(3)  Similarly as in subtask  (2)

$$y(t) = A_1 \cdot {\rm cos}(\omega_0 t ) + A_3 \cdot {\rm cos}(3\omega_0 t )+ A_5 \cdot {\rm cos}(5\omega_0 t )$$
holds with the following coefficients:
$$A_1 = A - {A^3}\hspace{-0.1cm}/{8} + {A^5}\hspace{-0.1cm}/{192},\hspace{0.3cm} A_3 = - {A^3}\hspace{-0.1cm}/{24} + {A^5}\hspace{-0.1cm}/{384},\hspace{0.3cm} A_5 = {A^5}\hspace{-0.1cm}/{1920}.$$
  • From this, the following numerical values arise a result with  $A=1$ :
$$A_1 \approx 1 -0.125 +0.005 = 0.880,\hspace{0.3cm} A_3 \approx -0.042 +0.003 = -0.039,\hspace{0.3cm} A_5 \approx 0.0005$$
$$\Rightarrow \hspace{0.3cm}K_3 = {|A_3|}/{A_1}= 0.0443,\hspace{0.3cm}K_5 = {|A_5|}/{A_1}= 0.0006 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K = \sqrt{K_3^2 + K_5^2} \hspace{0.15cm}\underline{\approx 4.45\%} \; \; \Rightarrow \; \; K_{g5}.$$


(4)  Approaches 1 and 3  are correct:

  • The approach  $g_5(x)$  is a better approximation for the sine function  $g(x)$  than the approximation  $g_3(x)$ in the entire domain.
  • Thus, the value  $K_{g5}$  computed in the subtask  (3)  is a better approximation for the actual distortion factor than  $K_{g3}$.
    Therefore, the first statement is correct.
  • The second statement is false as already shown by the computation for  $A=1$ :   $K_{g3} \approx 4.76 \%$  is greater than  $K_{g5} \approx 4.45 \%$.
  • The reason for this is that  $g_3(x)$  is below  $g_5(x)$  and thus there is also a greater deviation from the linear curve.
  • For  $A=0.5$ ,  $K_{g5} \approx K_{g3} = 1.08 \%$  will hold.
  • The characteristic curve on the information page shows that for  $|x| \le 0.5$  the functions  $g_3(x)$  and  $g_5(x)$  are indistinguishable within the accuracy of drawing.
  • This also results in  (nearly)  the same distortion factors.