Difference between revisions of "Aufgaben:Exercise 2.4: 2D Transfer Function"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort  $|h(\tau, \hspace{0.05cm}t)|$]]
 
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort  $|h(\tau, \hspace{0.05cm}t)|$]]
Dargestellt ist die zweidimensionale Impulsantwort  $h(\tau, \hspace{0.05cm}t)$  eines Mobilfunksystems in Betragsdarstellung.  
+
Shown is the two-dimensional impulse response  $h(\tau, \hspace{0.05cm}t)$  of a mobile radio system in magnitude representation.  
*Es ist zu erkennen, dass die 2D–Impulsantwort nur für die Verzögerungszeiten  $\tau = 0$  und  $\tau = 1 \ \rm µ s$  Anteile besitzt.  
+
*It can be seen that the 2D–impulse response only has shares for the delay times  $\tau = 0$  and  $\tau = 1 \ \rm µ s$ .  
*Zu diesen Zeitpunkten gilt:
+
*At these times:
:$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$
+
$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$
:$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$$
+
$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$
  
Für alle anderen  $\tau$–Werte ist  $h(\tau, \hspace{0.05cm}t) \equiv 0$.
+
For all others  $\tau$–values is  $h(\tau, \hspace{0.05cm}t) \equiv 0$.
  
Gesucht ist die zweidimensionale Übertragungsfunktion  $H(f, \hspace{0.05cm} t)$  als die Fouriertransformierte von  $h(\tau, t)$  hinsichtlich der Verzögerungszeit  $\tau$:
+
The two-dimensional transfer function  $H(f, \hspace{0.05cm} t)$  is sought as the Fourier transform of  $h(\tau, t)$  with respect to the delay time  $\tau$:
 
:$$H(f,\hspace{0.05cm} t)
 
:$$H(f,\hspace{0.05cm} t)
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
+
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t)   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Line 21: Line 21:
  
  
''Hinweise:''  
+
''Notes:''  
* Die Aufgabe gehört zum Kapitel  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
* This task belongs to chapter  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
* Eine ähnliche Problematik wird in der  [[Aufgaben:2.5_Scatter-Funktion| Aufgabe 2.5]]  behandelt, allerdings mit veränderter Nomenklatur.
+
* A similar problem is treated in  [[Aufgaben:Exercise_2.5:_Scatter_Function| Task 2.5]]  but with a different nomenclature.
 
   
 
   
  
Line 29: Line 29:
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Periodendauer&nbsp; $T_0$&nbsp; der Funktion&nbsp; $h(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)$? Beachten Sie, dass in der Grafik der <u>Betrag</u>&nbsp; $|h(\tau, \hspace{0.05cm}t)|$&nbsp; dargestellt ist.
+
{How large is the period duration&nbsp; $T_0$&nbsp; of the function&nbsp; $h(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)$? Note that the graphic shows the <u>amount</u>&nbsp; $|h(\dew, \hspace{0.05cm}t)|$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$T_0 \ = \ ${ 20 3% } $\ \rm ms$
+
$T_0 \ = \ ${ 20 3% } $\ \ \rm ms$
  
{Zu welchen Zeiten&nbsp; $t_1$&nbsp; $($zwischen&nbsp; $0$&nbsp; und&nbsp; $10 \ \rm ms)$&nbsp; und&nbsp; $t_2$&nbsp; $($zwischen&nbsp; $10 \ \rm ms$&nbsp; und&nbsp; $20 \ \rm ms)$&nbsp; ist&nbsp; $H(f, \hspace{0.05cm}t)$&nbsp; bezüglich&nbsp; $f$&nbsp; konstant?
+
{At what times&nbsp; $t_1$&nbsp; $($between&nbsp; $0$&nbsp; and&nbsp; $10 \ \rm ms)$&nbsp; and&nbsp; $t_2$&nbsp; $($between&nbsp; $10 \ \ \rm ms$&nbsp; and&nbsp; $20 \ \ \rm ms)$&nbsp; is&nbsp; $H(f, \hspace{0. 05cm}t)$&nbsp; is&nbsp; $f$&nbsp; constant?
 
|type="{}"}
 
|type="{}"}
$t_1 \ = \ ${ 5 3% } $\ \rm ms$
+
$t_1 \ = \ ${ 5 3% } $\ \ \rm ms$
$t_2 \ = \ ${ 15 3% } $\ \rm ms$
+
$t_2 \ = \ ${ 15 3% } $\ \ \rm ms$
  
{Berechnen Sie&nbsp; $H_0(f) = H(f, \hspace{0.05cm}t = 0)$. Welche Aussagen sind zutreffend?
+
{Calculate&nbsp; $H_0(f) = H(f, \hspace{0.05cm}t = 0)$. Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = &plusmn;1, &plusmn;2, \ \text{...}$
+
+ It applies&nbsp; $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = &plusmn;1, &plusmn;2, \ \ \ text{...}$
+ Es gilt näherungsweise&nbsp; $0.293 &#8804; |H_0(f)| &#8804; 1.707$.
+
+ It applies approximately&nbsp; $0.293 &#8804; |H_0(f)| &#8804; 1.707$.
+ $|H_0(f)|$&nbsp; hat bei&nbsp; $f = 0$&nbsp; ein Maximum.
+
+ $|H_0(f)|$&nbsp; has at&nbsp; $f = 0$&nbsp; a maximum.
  
{Berechnen Sie&nbsp; $H_{10}(f) = H(f, \hspace{0.05cm}t = 10 \ \rm ms)$. Welche Aussagen sind zutreffend?
+
{Calculate&nbsp; $H_{10}(f) = H(f, \hspace{0.05cm}t = 10 \ \rm ms)$. Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = &plusmn;1, &plusmn;2, \ \text{...}$
+
+ It applies&nbsp; $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = &plusmn;1, &plusmn;2, \ \ \ text{...}$
+ Es gilt näherungsweise&nbsp; $0.293 &#8804; H_{10}(f) &#8804; 1.707$.
+
+ It applies approximately&nbsp; $0.293 &#8804; H_{10}(f) &#8804; 1.707$.
- $|H_{10}(f)|$&nbsp; hat bei&nbsp; $f = 0$&nbsp; ein Maximum.
+
- $|H_{10}(f)|$&nbsp; has at&nbsp; $f = 0$&nbsp; a maximum.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
{{ML-Kopf}}
+
{{{ML-Kopf}}
'''(1)'''&nbsp; Die Periodendauer kann man aus der gegebenen Grafik ablesen. Berücksichtigt man die Betragsdarstellung, so ergibt sich $T_0 \ \underline {= 20 \ \rm ms}$.
+
'''(1)'''&nbsp; The period duration can be read from the given graph. If the amount representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$.
  
  
'''(2)'''&nbsp; Zum Zeitpunkt $t_1 \ \underline {= 5 \ \rm ms}$ ist $h(\tau = 1 \ {\rm &micro; s}, t_1) = 0$. Dementsprechend gilt
+
'''(2)'''&nbsp; At the time $t_1 \ \underline {= 5 \ \ \rm ms}$ is $h(\tau = 1 \ {\rm &micro; s}, t_1) = 0$. Accordingly, the following applies
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
+
$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
  H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
 
  H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
  
Ebenso gilt für $t_2 \ \underline {= 15 \ \rm ms}$:
+
The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$:
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
+
$$h(\dew = 1\,{\rm &micro; s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
  H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
 
  H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
  
  
  
'''(3)'''&nbsp; Zum Zeitpunkt $t = 0$ lautet die Impulsantwort mit $\tau_1 = 1 \ \rm &micro; s$:
+
'''(3)'''&nbsp; At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm &micro; s$:
:$$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$
+
$$h(\dew,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)+ \delta(\dew - \dew_1)\hspace{0.05cm}.$$
  
Die Fouriertransformation führt zum Ergebnis:
+
The Fourier transform leads to the result:
:$$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \tau_1)- {\rm j}\cdot \sin( 2 \pi f \tau_1)$$
+
$$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm}. \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \dew_1)- {\rm j}\cdot \sin( 2 \pi f \dew_1)$$
:$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
+
$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
  \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}=
+
  \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}=
  \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
+
  \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$
  
Daraus folgt:
+
It follows:
* $H_0(f)$ ist periodisch mit $1/\tau_1 = 1 \ \rm MHz$.
+
* $H_0(f)$ is periodic with $1/\thaw_1 = 1 \ \rm MHz$.
* Für den Maximalwert bzw. Minimalwert gilt:
+
* For the maximum value or minimum value applies:
:$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$
+
$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$
* Bei $f = 0$ hat $|H_0(f)|$ ein Maximum.
+
* At $f = 0$, $|H_0(f)|$ has a maximum.
  
  
Richtig sind demzufolge <u>alle drei Lösungsvorschläge</u>.
+
Therefore, <u>all three solution suggestions</u> are correct.
  
 
+
'''(4)'''&nbsp; For the time $t = 10 \ \rm ms$ the following equations apply:
'''(4)'''&nbsp; Für den Zeitpunkt $t = 10 \ \rm ms$ gelten folgende Gleichungen:
+
$$h(\dew,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2} \cdot \delta(\dew)- \delta(\dew - \dew_1)\hspace{0.05cm},$$
:$$h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},$$
+
$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
:$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
+
  \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$
  \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$
 
 
:$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
 
:$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
  \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
+
  \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$
  
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D–Impulsantwort $|h(\tau, \hspace{0.05cm}t)|$ und 2D–Übertragungsfunktion $|H(f, \hspace{0.05cm}t)|$]]
+
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response $|h(\dew, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$]]
Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:
+
Correct are the <u>solutions 1 and 2</u>:
*Die Frequenzperiode ändert sich gegenüber $t = 0$ nicht.  
+
*The frequency period does not change from $t = $0.  
*Der Maximalwert ist weiterhin $1.707$ und auch der Minimalwert $0.293$ ändert sich nicht gegenüber der Teilaufgabe '''(3)'''.  
+
*The maximum value is still $1,707$ and the minimum value $0,293$ does not change compared to the subtask '''(3)''.  
*Bei $f = 0$ gibt es nun ein Minimum und kein Maximum.  
+
*For $f = 0$ there is now a minimum and no maximum.  
  
  
Die rechte Grafik zeigt den Betrag $|H(f, t)|$ der 2D&ndash;Übertragungsfunktion.
+
The graph on the right shows the amount $|H(f, t)|$ of the 2D&ndash;transfer function.
  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
 
  
  
  
 
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
 
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]

Revision as of 16:28, 15 April 2020

2D–Impulsantwort  $|h(\tau, \hspace{0.05cm}t)|$

Shown is the two-dimensional impulse response  $h(\tau, \hspace{0.05cm}t)$  of a mobile radio system in magnitude representation.

  • It can be seen that the 2D–impulse response only has shares for the delay times  $\tau = 0$  and  $\tau = 1 \ \rm µ s$ .
  • At these times:

$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$ $$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$ For all others  $\tau$–values is  $h(\tau, \hspace{0.05cm}t) \equiv 0$. The two-dimensional transfer function  $H(f, \hspace{0.05cm} t)$  is sought as the Fourier transform of  $h(\tau, t)$  with respect to the delay time  $\tau$: :$$H(f,\hspace{0.05cm} t)

\hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t)  
\hspace{0.05cm}.$$






''Notes:'' 
* This task belongs to chapter  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
* A similar problem is treated in  [[Aufgaben:Exercise_2.5:_Scatter_Function| Task 2.5]]  but with a different nomenclature.
 




==='"`UNIQ--h-0--QINU`"'Questionnaire===
'"`UNIQ--quiz-00000002-QINU`"'

==='"`UNIQ--h-1--QINU`"'Sample solution===
{'"`UNIQ--html-00000003-QINU`"'
'''(1)'''  The period duration can be read from the given graph. If the amount representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$.


'''(2)'''  At the time $t_1 \ \underline {= 5 \ \ \rm ms}$ is $h(\tau = 1 \ {\rm µ s}, t_1) = 0$. Accordingly, the following applies
$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  
H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$

The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$:
$$h(\dew = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  
H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$



'''(3)'''  At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm µ s$:
$$h(\dew,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\dew)+ \delta(\dew - \dew_1)\hspace{0.05cm}.$$

The Fourier transform leads to the result:
$$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm}. \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \dew_1)- {\rm j}\cdot \sin( 2 \pi f \dew_1)$$
$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
\sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}=
\sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$

It follows:
* $H_0(f)$ is periodic with $1/\thaw_1 = 1 \ \rm MHz$.
* For the maximum value or minimum value applies:
'"`UNIQ-MathJax37-QINU`"'
* At $f = 0$, $|H_0(f)|$ has a maximum.


Therefore, <u>all three solution suggestions</u> are correct.

'''(4)'''  For the time $t = 10 \ \rm ms$ the following equations apply:
'"`UNIQ-MathJax38-QINU`"'
'"`UNIQ-MathJax39-QINU`"'
:$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
 \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$
2D impulse response $|h(\dew, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$

Correct are the solutions 1 and 2:

  • The frequency period does not change from $t = $0.
  • The maximum value is still $1,707$ and the minimum value $0,293$ does not change compared to the subtask '(3).
  • For $f = 0$ there is now a minimum and no maximum.


The graph on the right shows the amount $|H(f, t)|$ of the 2D–transfer function.