Difference between revisions of "Aufgaben:Exercise 2.4: 2D Transfer Function"

From LNTwww
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}}
  
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D–Impulsantwort  $|h(\tau, \hspace{0.05cm}t)|$]]
+
[[File:P_ID2161__Mob_A_2_4.png|right|frame|2D impulse response  $|h(\tau, \hspace{0.05cm}t)|$]]
 
The graph shows the two-dimensional impulse response  $h(\tau, \hspace{0.05cm}t)$  of a mobile radio system in magnitude representation.  
 
The graph shows the two-dimensional impulse response  $h(\tau, \hspace{0.05cm}t)$  of a mobile radio system in magnitude representation.  
*It can be seen that the 2D–impulse response only has components at delays  $\tau = 0$  and  $\tau = 1 \ \rm µ s$ .  
+
*It can be seen that the 2D impulse response only has components at delays  $\tau = 0$  and  $\tau = 1 \ \rm µ s$ .  
 
*At these times:
 
*At these times:
$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$
+
:$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$
$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$$
+
:$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$$
  
For all other values of   $\tau$, we have   $h(\tau, \hspace{0.05cm}t) \equiv 0$.
+
For all other values of  $\tau$,  we have  $h(\tau, \hspace{0.05cm}t) \equiv 0$.
  
 
We want to obtain the two-dimensional transfer function  $H(f, \hspace{0.05cm} t)$  as the Fourier transform of  $h(\tau, t)$  with respect to the delay   $\tau$:
 
We want to obtain the two-dimensional transfer function  $H(f, \hspace{0.05cm} t)$  as the Fourier transform of  $h(\tau, t)$  with respect to the delay   $\tau$:
Line 15: Line 15:
 
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
 
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
 +
  
  
 
''Notes:''  
 
''Notes:''  
* This task belongs to chapter  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].
+
* This task belongs to chapter  [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi–Path Reception in Mobile Communications]].
* A similar problem is treated in  [[Aufgaben:Exercise_2.5:_Scatter_Function| Task 2.5]]  but with a different nomenclature.
+
* A similar problem is treated in  [[Aufgaben:Exercise_2.5:_Scatter_Function| Exercize 2.5]]  but with a different nomenclature.
 
   
 
   
  
Line 27: Line 29:
 
===Questionnaire===
 
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{What is the period &nbsp; $T_0$&nbsp; of the function&nbsp; $h(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)$? Note that the graph shows the <u>magnitude</u>&nbsp; $|h(\tau, \hspace{0.05cm}t)|$&nbsp;.
+
{What is the period &nbsp; $T_0$&nbsp; of the function&nbsp; $h(\tau = 1 \ {\rm &micro; s},\hspace{0.05cm} t)$?&nbsp; Note that the graph shows the <u>magnitude</u>&nbsp; $|h(\tau, \hspace{0.05cm}t)|$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$T_0 \ = \ ${ 20 3% } $\ \ \rm ms$
 
$T_0 \ = \ ${ 20 3% } $\ \ \rm ms$
  
{At what times&nbsp; $t_1$&nbsp; $($between&nbsp; $0$&nbsp; and&nbsp; $10 \ \rm ms)$&nbsp; and&nbsp; $t_2$&nbsp; $($between&nbsp; $10 \ \ \rm ms$&nbsp; and&nbsp; $20 \ \ \rm ms)$&nbsp; is&nbsp; $H(f, \hspace{0.05cm}t)$&nbsp; constant in &nbsp; $f$&nbsp; ?
+
{At what times&nbsp; $t_1$&nbsp; $($between&nbsp; $0$&nbsp; and&nbsp; $10 \ \rm ms)$&nbsp; and&nbsp; $t_2$&nbsp; $($between&nbsp; $10 \ \ \rm ms$&nbsp; and&nbsp; $20 \ \ \rm ms)$&nbsp; is&nbsp; $H(f, \hspace{0.05cm}t)$&nbsp; constant in $f$&nbsp; ?
 
|type="{}"}
 
|type="{}"}
 
$t_1 \ = \ ${ 5 3% } $\ \ \rm ms$
 
$t_1 \ = \ ${ 5 3% } $\ \ \rm ms$
 
$t_2 \ = \ ${ 15 3% } $\ \ \rm ms$
 
$t_2 \ = \ ${ 15 3% } $\ \ \rm ms$
  
{Calculate&nbsp; $H_0(f) = H(f, \hspace{0.05cm}t = 0)$. Which statements are true?
+
{Calculate&nbsp; $H_0(f) = H(f, \hspace{0.05cm}t = 0)$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ &nbsp; $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = &plusmn;1, &plusmn;2, \ \ \ text{...}$
+
+ We have&nbsp; $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = &plusmn;1, &plusmn;2, \ \ \text{...}$
 
+ We have approximately&nbsp; $0.293 &#8804; |H_0(f)| &#8804; 1.707$.
 
+ We have approximately&nbsp; $0.293 &#8804; |H_0(f)| &#8804; 1.707$.
+ $|H_0(f)|$&nbsp; has a maximum at&nbsp; $f = 0$&nbsp;.
+
+ $|H_0(f)|$&nbsp; has a maximum at $f = 0$&nbsp;.
  
{Calculate&nbsp; $H_{10}(f) = H(f, \hspace{0.05cm}t = 10 \ \rm ms)$. Which statements are true?
+
{Calculate&nbsp; $H_{10}(f) = H(f, \hspace{0.05cm}t = 10 \ \rm ms)$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
+ &nbsp; $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = &plusmn;1, &plusmn;2, \ \ \ text{...}$
+
+ We have&nbsp; $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = &plusmn;1, &plusmn;2, \ \ \text{...}$
 
+ We have approximately&nbsp; $0.293 &#8804; H_{10}(f) &#8804; 1.707$.
 
+ We have approximately&nbsp; $0.293 &#8804; H_{10}(f) &#8804; 1.707$.
- $|H_{10}(f)|$&nbsp; has a maximum at&nbsp; $f = 0$&nbsp;.
+
- $|H_{10}(f)|$&nbsp; has a maximum at $f = 0$&nbsp;.
 
</quiz>
 
</quiz>
  
===Sample solution===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The period duration can be read from the given graph. If the amount representation is taken into account, the result is $T_0 \ \underline {= 20 \ \ \rm ms}$.
+
'''(1)'''&nbsp; The period can be read from the given graph.&nbsp; If the magnitude representation is taken into account, the result is&nbsp; $T_0 \ \underline {= 20 \ \ \rm ms}$.
  
  
'''(2)'''&nbsp; At the time $t_1 \ \underline {= 5 \ \ \rm ms}$ is $h(\tau = 1 \ {\rm &micro; s}, t_1) = 0$. Accordingly, the following applies
+
'''(2)'''&nbsp; At time&nbsp; $t_1 \ \underline {= 5 \ \ \rm ms}$&nbsp; we have&nbsp; $h(\tau = 1 \ {\rm &micro; s}, t_1) = 0$.&nbsp; Accordingly, the following applies
$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
+
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
  H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
 
  H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
  
The same applies to $t_2 \ \underline {= 15 \ \ \rm ms}$:
+
The same applies to&nbsp; $t_2 \ \underline {= 15 \ \ \rm ms}$:
$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
+
:$$h(\tau = 1\,{\rm &micro; s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}   
 
  H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
 
  H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$
  
  
  
'''(3)'''&nbsp; At time $t = 0$ the impulse response with $\tau_1 = 1 \ \ \rm &micro; s$:
+
'''(3)'''&nbsp; At time&nbsp; $t = 0$&nbsp; the impulse response with&nbsp; $\tau_1 = 1 \ \ \rm &micro; s$&nbsp; is
$$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$
+
:$$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$
  
The Fourier transform leads to the result:
+
Its Fourier transform is
$$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm}. \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \tau_1)- {\rm j}\cdot \sin( 2 \pi f \tau_1)$$
+
:$$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \tau_1)- {\rm j}\cdot \sin( 2 \pi f \tau_1)$$
$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
+
:$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
  \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}=
+
  \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}=
  \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$
+
  \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
  
It follows:
+
Therefore,
* $H_0(f)$ is periodic with $1/\tau_1 = 1 \ \rm MHz$.
+
* $H_0(f)$&nbsp; is periodic with&nbsp; $1/\tau_1 = 1 \ \rm MHz$.
* For the maximum value or minimum value applies:
+
* For the maximum and minimum values, we have
$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$
+
:$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$
* At $f = 0$, $|H_0(f)|$ has a maximum.
+
* At $f = 0$,&nbsp; $|H_0(f)|$ has a maximum.
  
  
Therefore, <u>all three solution suggestions</u> are correct.
+
Therefore, <u>all three solution suggestions</u>&nbsp; are correct.
  
 
'''(4)'''&nbsp; For the time $t = 10 \ \rm ms$ the following equations apply:
 
'''(4)'''&nbsp; For the time $t = 10 \ \rm ms$ the following equations apply:
$$h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},$$
+
:$$h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},$$
$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
+
:$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
  \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$
+
  \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$
 
:$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
 
:$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm}
  \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$
+
  \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
  
 
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response $|h(\tau, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$]]
 
[[File:P_ID2163__Mob_A_2_4d.png|right|frame|2D impulse response $|h(\tau, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$]]
Correct are the <u>solutions 1 and 2</u>:
+
<u>Solutions 1 and 2</u> are correct:
*The frequency period does not change from $t = $0.  
+
*The frequency period does not change compaired to&nbsp; $t = 0$.  
*The maximum value is still $1,707$ and the minimum value $0,293$ does not change compared to the subtask '''(3)''.  
+
*The maximum value is still&nbsp; $1.707$&nbsp; and the minimum value&nbsp; $0.293$&nbsp; does not change compared to the subtask&nbsp; '''(3)'''.  
*For $f = 0$ there is now a minimum and no maximum.  
+
*For $f = 0$&nbsp; there is now a minimum and not a maximum.  
  
  
The graph on the right shows the amount $|H(f, t)|$ of the 2D&ndash;transfer function.
+
The graph on the right shows the magnitude&nbsp; $|H(f, t)|$&nbsp; of the 2D transfer function.
  
  
Line 103: Line 105:
  
  
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
+
[[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]]

Latest revision as of 14:38, 23 March 2021

2D impulse response  $|h(\tau, \hspace{0.05cm}t)|$

The graph shows the two-dimensional impulse response  $h(\tau, \hspace{0.05cm}t)$  of a mobile radio system in magnitude representation.

  • It can be seen that the 2D impulse response only has components at delays  $\tau = 0$  and  $\tau = 1 \ \rm µ s$ .
  • At these times:
$$h(\tau = 0\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} = {\rm const.}$$
$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(2\pi \cdot {t}/{ T_0})\hspace{0.05cm}.$$

For all other values of  $\tau$,  we have  $h(\tau, \hspace{0.05cm}t) \equiv 0$.

We want to obtain the two-dimensional transfer function  $H(f, \hspace{0.05cm} t)$  as the Fourier transform of  $h(\tau, t)$  with respect to the delay   $\tau$:

$$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t) \hspace{0.05cm}.$$



Notes:



Questionnaire

1

What is the period   $T_0$  of the function  $h(\tau = 1 \ {\rm µ s},\hspace{0.05cm} t)$?  Note that the graph shows the magnitude  $|h(\tau, \hspace{0.05cm}t)|$ .

$T_0 \ = \ $

$\ \ \rm ms$

2

At what times  $t_1$  $($between  $0$  and  $10 \ \rm ms)$  and  $t_2$  $($between  $10 \ \ \rm ms$  and  $20 \ \ \rm ms)$  is  $H(f, \hspace{0.05cm}t)$  constant in $f$  ?

$t_1 \ = \ $

$\ \ \rm ms$
$t_2 \ = \ $

$\ \ \rm ms$

3

Calculate  $H_0(f) = H(f, \hspace{0.05cm}t = 0)$.  Which statements are true?

We have  $H_0(f) = H_0(f + i \cdot 1 \ {\rm MHz}), \ i = ±1, ±2, \ \ \text{...}$
We have approximately  $0.293 ≤ |H_0(f)| ≤ 1.707$.
$|H_0(f)|$  has a maximum at $f = 0$ .

4

Calculate  $H_{10}(f) = H(f, \hspace{0.05cm}t = 10 \ \rm ms)$.  Which statements are true?

We have  $H_{10}(f) = H_{10}(f + i \cdot 1 \ {\rm MHz}),\ i = ±1, ±2, \ \ \text{...}$
We have approximately  $0.293 ≤ H_{10}(f) ≤ 1.707$.
$|H_{10}(f)|$  has a maximum at $f = 0$ .


Solution

(1)  The period can be read from the given graph.  If the magnitude representation is taken into account, the result is  $T_0 \ \underline {= 20 \ \ \rm ms}$.


(2)  At time  $t_1 \ \underline {= 5 \ \ \rm ms}$  we have  $h(\tau = 1 \ {\rm µ s}, t_1) = 0$.  Accordingly, the following applies

$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f,\hspace{0.05cm}t_1) = \frac{1}{ \sqrt{2}} = {\rm const.}$$

The same applies to  $t_2 \ \underline {= 15 \ \ \rm ms}$:

$$h(\tau = 1\,{\rm µ s},\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} H(f,\hspace{0.05cm}t_2) = \frac{1}{ \sqrt{2}} = {\rm const.}$$


(3)  At time  $t = 0$  the impulse response with  $\tau_1 = 1 \ \ \rm µ s$  is

$$h(\tau,\hspace{0.05cm}t = 0) = \frac{1}{ \sqrt{2}} \cdot \delta(\tau)+ \delta(\tau - \tau_1)\hspace{0.05cm}.$$

Its Fourier transform is

$$H_0(f) = H(f,\hspace{0.05cm}t = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} + 1 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_1}=\frac{1}{ \sqrt{2}} + \cos( 2 \pi f \tau_1)- {\rm j}\cdot \sin( 2 \pi f \tau_1)$$
$$\Rightarrow \hspace{0.3cm} |H_0(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { \left [ {1}/{ \sqrt{2}} + \cos( 2 \pi f \tau_1) \right ]^2 + \left [\sin( 2 \pi f \tau_1)\right ]^2}= \sqrt { 0.5 + 1 + {2}/{ \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)} = \sqrt { 1.5 + { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$

Therefore,

  • $H_0(f)$  is periodic with  $1/\tau_1 = 1 \ \rm MHz$.
  • For the maximum and minimum values, we have
$${\rm Max}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 + { \sqrt{2}} } \approx 1.707 \hspace{0.05cm},\hspace{0.5cm}{\rm Min}\, \left [ \, |H_0(f)|\, \right ] \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} } \approx 0.293 \hspace{0.05cm}. $$
  • At $f = 0$,  $|H_0(f)|$ has a maximum.


Therefore, all three solution suggestions  are correct.

(4)  For the time $t = 10 \ \rm ms$ the following equations apply:

$$h(\tau,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} \cdot \delta(\tau)- \delta(\tau - \tau_1)\hspace{0.05cm},$$
$$H_{10}(f) = H(f,\hspace{0.05cm}t = 10\,{\rm ms}) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{ \sqrt{2}} - \cos( 2 \pi f \tau_1)+ {\rm j}\cdot \sin( 2 \pi f \tau_1)\hspace{0.05cm},$$
$$ |H_{10}(f)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt { 1.5 - { \sqrt{2}} \cdot \cos( 2 \pi f \tau_1)}\hspace{0.05cm}.$$
2D impulse response $|h(\tau, \hspace{0.05cm}t)|$ and 2D transfer function $|H(f, \hspace{0.05cm}t)|$

Solutions 1 and 2 are correct:

  • The frequency period does not change compaired to  $t = 0$.
  • The maximum value is still  $1.707$  and the minimum value  $0.293$  does not change compared to the subtask  (3).
  • For $f = 0$  there is now a minimum and not a maximum.


The graph on the right shows the magnitude  $|H(f, t)|$  of the 2D transfer function.