Difference between revisions of "Aufgaben:Exercise 2.4: Dual Code and Gray Code"

From LNTwww
 
(3 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1325__Dig_A_2_4.png|right|frame|Quaternary signals with dual and gray coding]]
+
[[File:P_ID1325__Dig_A_2_4.png|right|frame|Quaternary signals with dual and Gray coding]]
The two shown signals  $s_{1}(t)$  and  $s_{2}(t)$  are two different realizations of a redundancy-free quaternary transmit signal, both derived from the blue drawn source signal  $q(t)$.   
+
The two shown signals  $s_{1}(t)$  and  $s_{2}(t)$  are two different realizations of a redundancy-free quaternary transmitted signal,  both derived from the blue drawn binary source signal  $q(t)$.   
  
For one of the transmitted signals, the so-called '''dual code''' with mapping
+
For one of the transmitted signals,  the so-called  '''dual code'''  with mapping
 
:$$\mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0, \hspace{0.35cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0/3,\hspace{0.35cm}  
 
:$$\mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0, \hspace{0.35cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0/3,\hspace{0.35cm}  
 
\mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0/3, \hspace{0.35cm} \mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0$$
 
\mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0/3, \hspace{0.35cm} \mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0$$
was used, for the other one a certain form of a '''gray code'''. This is characterized by the fact that the binary representation of adjacent amplitude values always differ only in a single bit.
+
was used,  for the other one a certain form of a  '''Gray code'''.  This is characterized by the fact that the binary representation of adjacent amplitude values always differ only in a single bit.
  
 
The solution of the exercise should be based on the following assumptions:
 
The solution of the exercise should be based on the following assumptions:
*The amplitude levels are  $±3\, \rm V$ and $±1 \, \rm V$.  
+
*The amplitude levels are  $±3\, \rm V$  and  $±1 \, \rm V$.
*The decision thresholds lie in the middle between two adjacent amplitude values, i.e. at  $–2\, \rm V$, $0\, \rm V$  and  $+2\, \rm V$.
+
*The noise rms value  $\sigma_{d}$  is to be chosen so that the distortion probability from the outer symbol  $(+s_0)$  to the nearest symbol  $(+s_{0}/3)$  is exactly  $p = 1\%$.
+
*The decision thresholds lie in the middle between two adjacent amplitude values,  i.e. at  $–2\, \rm V$,  $0\, \rm V$  and  $+2\, \rm V$.
*Distortions to non-adjacent symbols can be excluded; in the case of Gaussian perturbations, this simplification is always allowed in practice.
+
 
 +
*The noise rms value  $\sigma_{d}$  is to be chosen so that the falsification  probability from the outer symbol  $(+s_0)$  to the nearest symbol  $(+s_{0}/3)$  is exactly  $p = 1\%$.
 +
 
 +
*Falsification to non-adjacent symbols can be excluded;  in the case of Gaussian perturbations,  this simplification is always allowed in practice.
  
  
  
 
One distinguishes in principle between  
 
One distinguishes in principle between  
*the  ''symbol error probability''  $p_{\rm S}$  (related to the quaternary signal) and
+
*the  "symbol error probability"  $p_{\rm S}$  (related to the quaternary signal)  and
*the  ''bit error probability''  $p_{B}$  (related to the binary source signal).
+
*the  "bit error probability"  $p_{B}$  (related to the binary source signal).
 
 
  
  
Line 28: Line 30:
  
  
 +
Notes:
 +
*The exercise is part of the chapter   [[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|"Basics of Coded Transmission"]].
  
''Notes:''
+
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Redundanzfreie_Codierung|"Redundancy-Free Coding"]].
*The exercise is part of the chapter   [[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|Basics of Coded Transmission]].
 
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Redundanzfreie_Codierung|Redundancy-Free Coding]].
 
 
   
 
   
*For numerical evaluation of the Q–function you can use the interactive applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]]  benutzen.
+
*For numerical evaluation of the Q–function you can use the HTML5/JavaScript applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
  
  
Line 40: Line 42:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Which of the signals &nbsp;$s_{1}(t)$&nbsp; or &nbsp;$s_{2}(t)$&nbsp; uses a '''gray coding'''?
+
{Which of the signals &nbsp;$s_{1}(t)$&nbsp; or &nbsp;$s_{2}(t)$&nbsp; uses&nbsp; '''Gray coding'''?
|type="()"}
+
|type="[]"}
+$s_{1}(t)$&nbsp; uses a gray coding.
+
+$s_{1}(t)$&nbsp; uses Gray coding.
-$s_{2}(t)$&nbsp; uses a gray coding.
+
-$s_{2}(t)$&nbsp; uses Gray coding.
  
 
{Determine the noise rms value from the given condition.
 
{Determine the noise rms value from the given condition.
Line 49: Line 51:
 
$\sigma_{d} \ = \ $ { 0.43 3% } $\ \rm V$
 
$\sigma_{d} \ = \ $ { 0.43 3% } $\ \rm V$
  
{What is the symbol error probability using the '''gray code'''?
+
{What is the symbol error probability using the&nbsp; '''Gray code'''?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 1.5 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 1.5 3% } $\ \%$
  
{What is the bit error probability with the gray code?
+
{What is the bit error probability with the Gray code?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ = \ $ { 0.75 3% } $\ \%$
 
$p_{\rm B} \ = \ $ { 0.75 3% } $\ \%$
  
{What is the symbol error probability with the '''dual code'''?
+
{What is the symbol error probability with the&nbsp; '''dual code'''?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 1.5 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 1.5 3% } $\ \%$
Line 69: Line 71:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; In the signal $s_{2}(t)$ one recognizes the realization of the dual code indicated at the beginning. On the other hand, in the signal $s_{2}(t)$ a gray code  $\Rightarrow$ <u>solution 1</u> with the following mapping was used:
+
'''(1)'''&nbsp; In the signal&nbsp; $s_{2}(t)$&nbsp; one recognizes the realization of the dual code indicated at the beginning.&nbsp; On the other hand,&nbsp; in the signal&nbsp; $s_{2}(t)$&nbsp; a Gray code &nbsp; $\Rightarrow$ &nbsp; <u>solution 1</u> with the following mapping was used:
 
:$$\mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1, \hspace{0.35cm} \mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1/3, \hspace{0.35cm} \mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1/3, \hspace{0.35cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1 \hspace{0.05cm}.$$
 
:$$\mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1, \hspace{0.35cm} \mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1/3, \hspace{0.35cm} \mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1/3, \hspace{0.35cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1 \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Let the probability $p$ that the amplitude value $3 \, \rm V$ falls below the adjacent decision threshold $2\,  \rm V$ due to the Gaussian distributed noise with standard deviation $\sigma_{d}$ be $1\,  \%$. It follows that:
+
'''(2)'''&nbsp; Let the probability&nbsp; $p$&nbsp; that the amplitude value&nbsp; $3 \, \rm V$&nbsp; falls below the adjacent decision threshold&nbsp; $2\,  \rm V$&nbsp; due to the Gaussian distributed noise with standard deviation&nbsp; $\sigma_{d}$&nbsp; be $1\,  \%$.&nbsp; It follows that:
 
:$$ p = {\rm Q} \left ( \frac{3\,{\rm V} - 2\,{\rm V}} { \sigma_d}\right ) = 1 \%\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {1\,{\rm V} }/ { \sigma_d} \approx 2.33 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} { \sigma_d}\hspace{0.15cm}\underline {\approx 0.43\,{\rm V}}\hspace{0.05cm}.$$
 
:$$ p = {\rm Q} \left ( \frac{3\,{\rm V} - 2\,{\rm V}} { \sigma_d}\right ) = 1 \%\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {1\,{\rm V} }/ { \sigma_d} \approx 2.33 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} { \sigma_d}\hspace{0.15cm}\underline {\approx 0.43\,{\rm V}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp;  The two outer symbols are each distorted with probability $p$, the two inner symbols with double probability $(2p)$. By averaging considering equal symbol occurrence probabilities, we obtain
+
'''(3)'''&nbsp;  The two outer symbols are each falsified with probability&nbsp; $p$,&nbsp; the two inner symbols with double probability&nbsp; $(2p)$.&nbsp; By averaging considering equal symbol occurrence probabilities,&nbsp; we obtain
 
:$$p_{\rm S} = 1.5 \cdot p \hspace{0.15cm}\underline { = 1.5 \,\%} \hspace{0.05cm}.$$
 
:$$p_{\rm S} = 1.5 \cdot p \hspace{0.15cm}\underline { = 1.5 \,\%} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Each symbol error results in exactly one bit error. However, since each quaternary symbol contains exactly two binary symbols, the bit error probability is obtained:
+
'''(4)'''&nbsp; Each symbol error results in exactly one bit error.&nbsp; However,&nbsp; since each quaternary symbol contains exactly two binary symbols,&nbsp; the bit error probability is obtained:
 
:$$p_{\rm B} = {p_{\rm S}}/ { 2}\hspace{0.15cm}\underline { = 0.75 \,\%} \hspace{0.05cm}.$$
 
:$$p_{\rm B} = {p_{\rm S}}/ { 2}\hspace{0.15cm}\underline { = 0.75 \,\%} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; When calculating the symbol error probability $p_{\rm S}$, the mapping used is not taken into account. As in subtask '''(3)''', we obtain  $p_{\rm S} \hspace{0.15cm}\underline{ = 1.5 \, \%}$.
+
'''(5)'''&nbsp; When calculating the symbol error probability&nbsp; $p_{\rm S}$,&nbsp; the mapping used is not taken into account.&nbsp; As in subtask&nbsp; '''(3)''',&nbsp; we obtain&nbsp; $p_{\rm S} \hspace{0.15cm}\underline{ = 1.5 \, \%}$.
  
  
'''(6)'''&nbsp; The two outer symbols are distorted with $p$ and lead to only one bit error each even with dual code.
+
'''(6)'''&nbsp; The two outer symbols are falsified with&nbsp; $p$&nbsp; and lead to only one bit error each even with dual code.
* The inner symbols are distorted with $2p$ and now lead to $1.5$ bit errors on average.
+
* The inner symbols are falsified with&nbsp; $2p$&nbsp; and now lead to&nbsp; $1.5$&nbsp; bit errors on average.
*Taking into account the factor $2$ in the denominator – see subtask '''(2)''' – we thus obtain for the bit error probability of the dual code:
+
*Taking into account the factor&nbsp; $2$&nbsp; in the denominator – see subtask&nbsp; '''(2)'''&nbsp; – we thus obtain for the bit error probability of the dual code:
 
:$$p_{\rm B} = \frac{1} { 4} \cdot \frac{p + 2p \cdot 1.5 + 2p \cdot 1.5 + p} { 2} = p \hspace{0.15cm}\underline { = 1 \,\%} \hspace{0.05cm}.$$
 
:$$p_{\rm B} = \frac{1} { 4} \cdot \frac{p + 2p \cdot 1.5 + 2p \cdot 1.5 + p} { 2} = p \hspace{0.15cm}\underline { = 1 \,\%} \hspace{0.05cm}.$$
  

Latest revision as of 17:46, 16 May 2022

Quaternary signals with dual and Gray coding

The two shown signals  $s_{1}(t)$  and  $s_{2}(t)$  are two different realizations of a redundancy-free quaternary transmitted signal,  both derived from the blue drawn binary source signal  $q(t)$. 

For one of the transmitted signals,  the so-called  dual code  with mapping

$$\mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0, \hspace{0.35cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0/3,\hspace{0.35cm} \mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0/3, \hspace{0.35cm} \mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0$$

was used,  for the other one a certain form of a  Gray code.  This is characterized by the fact that the binary representation of adjacent amplitude values always differ only in a single bit.

The solution of the exercise should be based on the following assumptions:

  • The amplitude levels are  $±3\, \rm V$  and  $±1 \, \rm V$.
  • The decision thresholds lie in the middle between two adjacent amplitude values,  i.e. at  $–2\, \rm V$,  $0\, \rm V$  and  $+2\, \rm V$.
  • The noise rms value  $\sigma_{d}$  is to be chosen so that the falsification probability from the outer symbol  $(+s_0)$  to the nearest symbol  $(+s_{0}/3)$  is exactly  $p = 1\%$.
  • Falsification to non-adjacent symbols can be excluded;  in the case of Gaussian perturbations,  this simplification is always allowed in practice.


One distinguishes in principle between

  • the  "symbol error probability"  $p_{\rm S}$  (related to the quaternary signal)  and
  • the  "bit error probability"  $p_{B}$  (related to the binary source signal).



Notes:


Questions

1

Which of the signals  $s_{1}(t)$  or  $s_{2}(t)$  uses  Gray coding?

$s_{1}(t)$  uses Gray coding.
$s_{2}(t)$  uses Gray coding.

2

Determine the noise rms value from the given condition.

$\sigma_{d} \ = \ $

$\ \rm V$

3

What is the symbol error probability using the  Gray code?

$p_{\rm S} \ = \ $

$\ \%$

4

What is the bit error probability with the Gray code?

$p_{\rm B} \ = \ $

$\ \%$

5

What is the symbol error probability with the  dual code?

$p_{\rm S} \ = \ $

$\ \%$

6

What is the bit error probability with the dual code?

$p_{\rm B} \ = \ $

$\ \%$


Solution

(1)  In the signal  $s_{2}(t)$  one recognizes the realization of the dual code indicated at the beginning.  On the other hand,  in the signal  $s_{2}(t)$  a Gray code   $\Rightarrow$   solution 1 with the following mapping was used:

$$\mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1, \hspace{0.35cm} \mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1/3, \hspace{0.35cm} \mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1/3, \hspace{0.35cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1 \hspace{0.05cm}.$$


(2)  Let the probability  $p$  that the amplitude value  $3 \, \rm V$  falls below the adjacent decision threshold  $2\, \rm V$  due to the Gaussian distributed noise with standard deviation  $\sigma_{d}$  be $1\, \%$.  It follows that:

$$ p = {\rm Q} \left ( \frac{3\,{\rm V} - 2\,{\rm V}} { \sigma_d}\right ) = 1 \%\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {1\,{\rm V} }/ { \sigma_d} \approx 2.33 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} { \sigma_d}\hspace{0.15cm}\underline {\approx 0.43\,{\rm V}}\hspace{0.05cm}.$$


(3)  The two outer symbols are each falsified with probability  $p$,  the two inner symbols with double probability  $(2p)$.  By averaging considering equal symbol occurrence probabilities,  we obtain

$$p_{\rm S} = 1.5 \cdot p \hspace{0.15cm}\underline { = 1.5 \,\%} \hspace{0.05cm}.$$


(4)  Each symbol error results in exactly one bit error.  However,  since each quaternary symbol contains exactly two binary symbols,  the bit error probability is obtained:

$$p_{\rm B} = {p_{\rm S}}/ { 2}\hspace{0.15cm}\underline { = 0.75 \,\%} \hspace{0.05cm}.$$


(5)  When calculating the symbol error probability  $p_{\rm S}$,  the mapping used is not taken into account.  As in subtask  (3),  we obtain  $p_{\rm S} \hspace{0.15cm}\underline{ = 1.5 \, \%}$.


(6)  The two outer symbols are falsified with  $p$  and lead to only one bit error each even with dual code.

  • The inner symbols are falsified with  $2p$  and now lead to  $1.5$  bit errors on average.
  • Taking into account the factor  $2$  in the denominator – see subtask  (2)  – we thus obtain for the bit error probability of the dual code:
$$p_{\rm B} = \frac{1} { 4} \cdot \frac{p + 2p \cdot 1.5 + 2p \cdot 1.5 + p} { 2} = p \hspace{0.15cm}\underline { = 1 \,\%} \hspace{0.05cm}.$$