Difference between revisions of "Aufgaben:Exercise 2.5Z: Multi-Path Scenario"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} [[File:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]…“)
 
m (Text replacement - "Category:Exercises for Mobile Communications" to "Category:Mobile Communications: Exercises")
 
(24 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}}
+
{{quiz-Header|Buchseite=Mobile_Communications/The_GWSSUS_Channel_Model}}
  
[[File:P_ID2169__Mob_Z_2_5.png|right|frame|Mobilfunk–Szenario mit drei Pfaden]]
+
[[File:EN_Mob_A_2_5Z.png|right|frame|Mobile radio scenario with three paths]]
In  [[Aufgaben:2.5_Scatter-Funktion| Aufgabe 2.5]]  war die Verzögerungs–Doppler–Funktion vorgegeben. Daraus sollte man die anderen Systemfunktionen berechnen und interpretieren. Die Vorgabe für die Scatterfunktion  $s(\tau_0, f_{\rm D})$  lautete:
+
In  [[Aufgaben:Exercise_2.5:_Scatter_Function| Exercise 2.5]], a delay–Doppler function (or scatter function) was given.  From this, you should calculate and interpret the other system functions.  The given scatter function  $s(\tau_0, f_{\rm D})$  was
 
:$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
 
:$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
:$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz})  
+
:$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz})  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
''Hinweis:''   In unserem Lerntutorial wird  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  auch mit  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$  bezeichnet.  
+
''Note:''   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$.  
  
Wir haben hier die Verzögerungsvariable  $\tau$  durch  $\tau_0$  ersetzt. Dabei beschreibt die neue Variable  $\tau_0$  die Differenz zwischen der Laufzeit eines Pfades und der Laufzeit  $\tau_1$  des Hauptpfades. Der Hauptpfad ist somit in obiger Gleichung durch  $\tau_0 = 0$  gekennzeichnet.
+
Here we have replaced the delay variable  $\tau$  with  $\tau_0$ .  The new variable  $\tau_0$  describes the difference between the delay of a path and the delay  $\tau_1$  of the main path.  The main path is thus identified in the above equation by  $\tau_0 = 0$.
  
Nun wird versucht, ein Mobilfunkszenario zu finden, bei dem tatsächlich diese Scatterfunktion auftreten würde. Die Grundstruktur ist dabei oben als Draufsicht skizziert, und es gilt:
+
Now, we try to find a mobile radio scenario in which this scatter function would actually occur.  The basic structure is sketched above as a top view, and the following hold:
* Gesendet wird eine einzige Frequenz  $f_{\rm S} = 2 \ \rm GHz$.
+
* A single frequency is transmitted:  $f_{\rm S} = 2 \ \rm GHz$.
* Der mobile Empfänger  $\rm (E)$  ist hier durch einen gelben Punkt dargestellt. Nicht bekannt ist, ob das Fahrzeugt steht, sich auf den Sender  $\rm (S)$  zu bewegt oder sich von diesem entfernt.
+
* The mobile receiver  $\rm (E)$  is represented here by a yellow dot.  It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away.
* Das Signal gelangt über einen Hauptpfad (rot) und zwei Nebenpfaden (blau und grün) zum Empfänger. Reflexionen an den Hindernissen führen jeweils zu Phasendrehungen um  $\pi$.
+
* The signal reaches the receiver via a main path (red) and two secondary paths (blue and green).  Reflections from the obstacles cause phase shifts of  $\pi$.
* ${\rm S}_2$  und  ${\rm S}_3$  sind hier als fiktive Sender zu verstehen, aus deren Lage die Auftreffwinkel  $\alpha_2$  und  $\alpha_3$  der Nebenpfade ermittelt werden können.
+
* ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
* Für die Dopplerfrequenz gilt mit der Signalfrequenz  $f_{\rm S}$, dem Winkel  $\alpha$, der Geschwindigkeit  $v$  und der Lichtgeschwindigkeit  $c = 3 \cdot 10^8 \ \rm m/s$:
+
* Let the signal frequency be  $f_{\rm S}$,  the angle of incidence  $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$.  Then, the Doppler frequency is
 
:$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
:$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Die Dämpfungsfaktoren  $k_1$,  $k_2$  und  $k_3$  sind umgekehrt proportional zu den Pfadlängen  $d_1$,  $d_2$  und  $d_3$. Dies entspricht dem Pfadverlustexponenten  $\gamma = 2$.
+
* The damping factors  $k_1$,  $k_2$  and  $k_3$  are inversely proportional to the path lengths  $d_1$,  $d_2$  and  $d_3$. This corresponds to the path loss exponent  $\gamma = 2$.
*Das bedeutet:   Die Signalleistung nimmt quadratisch mit der Distanz  $d$  ab und dementsprechend die Signalamplitude linear mit  $d$.
+
*This means:   The signal power decreases quadratically with distance  $d$  and accordingly the signal amplitude decreases linearly with  $d$.
  
  
Line 30: Line 30:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Kapitel  [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS–Kanalmodell]].
+
* This task belongs to chapter  [[Mobile_Communications/The_GWSSUS_Channel_Model| The GWSSUS Channel Model]].
*Bezug genommen wird insbesondere auf das  [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung#Gebr.C3.A4uchliches_Pfadverlustmodell| Pfadverlustmodell]]  und den  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#Dopplerfrequenz_und_deren_Verteilung| Dopplereffekt]].
+
*We also refer to the pages  [[Mobile_Communications/Distance_Dependent_Attenuation_and_Shading#Common_path_loss_model| Common path-loss model]]  and  [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution| Doppler frequency and its distribution]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Betrachten Sie zunächst nur die Diracfunktion bei&nbsp; $\tau = 0$&nbsp; und&nbsp; $f_{\rm D} = 100 \ \rm Hz$. Welche Aussagen gelten für den Empfänger?
+
{At first, consider only the Dirac function at&nbsp; $\tau = 0$&nbsp; and&nbsp; $f_{\rm D} = 100 \ \rm Hz$.&nbsp; Which statements apply to the receiver?
 
|type="()"}
 
|type="()"}
- Der Empfänger steht.
+
- The receiver is standing.
+ Der Empfänger fährt direkt auf den Sender zu.
+
+ The receiver moves directly towards the transmitter.
- Der Empfänger entfernt sich in Gegenrichtung zum Sender.
+
- The receiver moves away in the opposite direction to the transmitter.
  
{Wie groß ist die Fahrzeuggeschwindigkeit?
+
{What is the vehicle speed?
 
|type="{}"}
 
|type="{}"}
$v \ = \ ${ 54 3% } $\ \rm km/h$
+
$v \ = \ ${ 54 3% } $\ \ \rm km/h$
  
{Welche Aussagen gelten für den Dirac bei&nbsp; $\tau_0 = 1 \ \rm &micro; s$&nbsp; und&nbsp; $f_{\rm D} = +50 \ \rm Hz$?
+
{Which statements apply to the Dirac at&nbsp; $\tau_0 = 1 \ \ \rm &micro; s$&nbsp; and&nbsp; $f_{\rm D} = +50 \ \ \rm Hz$?
 
|type="[]"}
 
|type="[]"}
+ Dieser Dirac stammt vom blauen Pfad.
+
+ This Dirac comes from the blue path.
- Dieser Dirac stammt vom grünen Pfad.
+
- This Dirac comes from the green path.
- Der Winkel&nbsp; beträgt&nbsp; $30^\circ$.
+
- The angle&nbsp; is&nbsp; $30^\circ$.
+ Der Winkel&nbsp; beträgt&nbsp; $60^\circ$.
+
+ The angle&nbsp; is&nbsp; $60^\circ$.
  
{Welche Aussagen gelten für den grünen Pfad?
+
{What statements apply to the green path?
 
|type="[]"}
 
|type="[]"}
+ Für diesen gilt&nbsp; $\tau_0 = 1 \ \rm &micro; s$&nbsp; und&nbsp; $f_{\rm D} = \, &ndash;50 \ \rm Hz$.
+
+ We have $\tau_0 = 1 \ \rm &micro; s$&nbsp; and&nbsp; $f_{\rm D} = -50 \ \rm Hz$.
- Der Winkel&nbsp; $\alpha_3$&nbsp; (siehe Grafik) beträgt&nbsp; $60^\circ$.
+
- The angle&nbsp; $\alpha_3$&nbsp; (see graph) is&nbsp; $60^\circ$.
+ Der Winkel&nbsp; $\alpha_3$&nbsp; beträgt&nbsp; $240^\circ$.
+
+ The angle&nbsp; $\alpha_3$&nbsp; is&nbsp; $240^\circ$.
  
{Welche Relationen bestehen zwischen den beiden Nebenpfaden?
+
{Which of the following relations hold between the two side paths?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $d_3 = d_2$.
+
+ $d_3 = d_2$.
+ Es gilt&nbsp; $k_3 = k_2$.
+
+ $k_3 = k_2$.
+ Es gilt&nbsp; $\tau_3 = \tau_2$.
+
+ $\tau_3 = \tau_2$.
  
{Wie groß ist die Laufzeitdifferenz&nbsp; $\Delta d = d_2 - d_1$?
+
{What is the difference&nbsp; $\Delta d = d_2 - d_1$&nbsp;  in time?
 
|type="{}"}
 
|type="{}"}
$\Delta d \ = \ ${ 300 3% } $\ \rm m$
+
$\Delta d \ = \ ${ 300 3% } $\ \ \rm m$
  
{Welches Verhältnis besteht zwischen&nbsp; $d_2$&nbsp; und&nbsp; $d_1$?
+
{What is the relationship between&nbsp; $d_2$&nbsp; and&nbsp; $d_1$?
 
|type="{}"}
 
|type="{}"}
$d_2/d_1 \ = \ ${ 1.414 3% }
+
$d_2/d_1 \ = \ ${ 1,414 3% }
  
{Geben Sie die Distanzen&nbsp; $d_1$&nbsp; und&nbsp; $d_2$&nbsp; an.
+
{Find the distances&nbsp; $d_1$&nbsp; and&nbsp; $d_2$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$d_1 \ = \ ${ 724 3% } $\ \rm m$
 
$d_1 \ = \ ${ 724 3% } $\ \rm m$
Line 82: Line 82:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Dopplerfrequenz ist für $\tau_0$ positiv. Das heißt, dass sich der Empfänger auf den Sender zu bewegt &nbsp; &#8658; &nbsp; <u>Aussage 2</u>.
+
'''(1)'''&nbsp; The Doppler frequency is positive for&nbsp; $\tau_0$.&nbsp; This means that the receiver is moving towards the transmitter &nbsp; &#8658; &nbsp; <u>solution 2</u> is correct.
  
  
'''(2)'''&nbsp; Die Gleichung für die Dopplerfrequenz lautet allgemein bzw. für den Winkel $\alpha = 0$.
+
'''(2)'''&nbsp; The equation for the Doppler frequency is
 
:$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
 
:$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha)
  \hspace{0.05cm},\hspace{0.3cm}\alpha = 0 \hspace{0.05cm}{\rm :} \hspace{0.15cm}f_{\rm D}= \frac{v}{c} \cdot f_{\rm S}\hspace{0.05cm}.$$
+
  \hspace{0.05cm}.$$
 +
*If the angle of incidence is&nbsp; $\alpha=0$, then the Doppler frequency is
 +
:$$f_{\rm D}=\frac{v}{c}\cdot f_{\rm S}.$$
  
*Daraus erhält man für die Geschwindigkeit:
+
*In this case the speed of the receiver is
 
:$$v = \frac{f_{\rm D}}{f_{\rm S}} \cdot c = \frac{10^2\,{\rm Hz}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
 
:$$v = \frac{f_{\rm D}}{f_{\rm S}} \cdot c = \frac{10^2\,{\rm Hz}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s}
 
   \hspace{0.1cm} \underline {= 54 \,{\rm km/h}}  
 
   \hspace{0.1cm} \underline {= 54 \,{\rm km/h}}  
Line 97: Line 99:
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(3)'''&nbsp; <u>Solutions 1 and 4</u> are correct:
*Die Dopplerfrequenz $f_{\rm D} = 50 \ \rm Hz$ rührt vom blauen Pfad her, da sich der Empfänger irgendwie auf den virtuellen Sender ${\rm S}_2$ (beim Reflexionspunkt) zubewegt, wenn auch nicht in direkter Richtung.  
+
*The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$&nbsp; comes from the blue path, because the receiver moves towards the virtual transmitter&nbsp; ${\rm S}_2$ (i.e., towards the reflection point), although not directly.&nbsp;
*Der Winkel $\alpha_2$ zwischen der Bewegungsrichtung und der Verbindungslinie ${\rm S_2 &ndash; E}$ beträgt $60^\circ$:
+
*In other words:&nbsp; The movement of the receiver <b>reduces</b> the blue path's length.
 +
*The angle&nbsp; $\alpha_2$&nbsp; between the direction of movement and the connecting line&nbsp; ${\rm S_2 &ndash; E}$&nbsp; is&nbsp; $60^\circ$:
 
:$$\cos(\alpha_2) = \frac{f_{\rm D}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}}  = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
 
:$$\cos(\alpha_2) = \frac{f_{\rm D}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}}  = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2
 
   \hspace{0.1cm} \underline {= 60^{\circ} }  
 
   \hspace{0.1cm} \underline {= 60^{\circ} }  
Line 105: Line 108:
  
  
'''(4)'''&nbsp; Richtig sind die <u>Aussagen 1 und 3</u>:  
+
'''(4)'''&nbsp; <u>Statements 1 and 3</u> are correct:&nbsp; From&nbsp; $f_{\rm D} = \, &ndash;50 \ \rm Hz$&nbsp; follows&nbsp; $\alpha_3 = \alpha_2 &plusmn; \pi$ &nbsp; &rArr; &nbsp; $\alpha_3 \ \underline {= 240^\circ}$.
*Aus $f_{\rm D} = \, &ndash;50 \ \rm Hz$ folgt $\alpha_3 = \alpha_2 &plusmn; \pi$, also $\alpha_3 \ \underline {= 240^\circ}$.
 
  
  
  
'''(5)'''&nbsp; <u>Alle Aussagen stimmen</u>:  
+
'''(5)'''&nbsp; <u>All statements are correct</u>:  
*Die beiden Diracfunktionen bei $&plusmn; 50 \ \rm Hz$ haben die gleiche Laufzeit. Für beide Laufzeiten gilt $\tau_3 = \tau_2 = \tau_1 + \tau_0$.  
+
*The two Dirac functions at&nbsp; $&plusmn; 50 \ \ \rm Hz$&nbsp; have the same delay.&nbsp; We have&nbsp; $\tau_3 = \tau_2 = \tau_1 + \tau_0$.  
*Aus der gleichen Laufzeit folgt aber auch&nbsp; $d_3 = d_2$&nbsp; und bei gleicher Länge auch die gleichen Dämpfungsfaktoren.
+
*From the equality of the delays, however, it follows also&nbsp; $d_3 = d_2$.
 +
*As both paths have the same length, their damping factors are equal, too.
  
  
  
'''(6)'''&nbsp; Die Laufzeitdifferenz ist $\tau_0 = 1 \ \rm &micro; s$, wie aus der Gleichung für $s(\tau_0, f_{\rm D})$ hervorgeht.
+
'''(6)'''&nbsp; The delay difference is&nbsp; $\tau_0 = 1 \ \rm &micro; s$, as shown in the equation for&nbsp; $s(\tau_0, f_{\rm D})$.&nbsp; This gives the difference in length:  
* Damit ergibt sich die Längendifferenz:  
+
:$$\Delta d = \tau_0 \cdot c = 10^{&ndash;6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$
:$$\Delta d = \tau_0 \cdot c = 10^{&ndash;6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \underline {= 300 \ \rm m}.$$
 
  
  
 +
'''(7)'''&nbsp; The path loss exponent was assumed to be&nbsp; $\gamma = 2$&nbsp; for this task.
 +
*Then&nbsp; $k_1 = K/d_1$&nbsp; and&nbsp; $k_2 = K/d_2$.&nbsp; The constant&nbsp; $K$&nbsp; is only an auxiliary variable that does not need to be considered further.
  
'''(7)'''&nbsp; Der Pfadverlustexponent wurde für diese Aufgabe zu $\gamma = 2$ vorausgesetzt.  
+
*The minus sign takes into account the&nbsp; $180^\circ$&nbsp; phase rotation on the secondary paths.  
*Dann gilt $k_1 = K/d_1$ und $k_2 = K/d_2$.  
+
*From the weights of the Dirac functions one can read&nbsp; $k_1 = \sqrt{0.5}$&nbsp; and&nbsp; $k_2 = -0.5$.&nbsp; Therefore:
  
*Das Minuszeichen berücksichtigt hierbei die $180^\circ$&ndash;Phasendrehung auf den Nebenpfaden.
 
*Aus den Gewichten der Diracfunktionen kann man $k_1 = \sqrt{0.5}$ und $k_2 = -0.5$ ablesen. Daraus folgt:
 
 
:$$\frac{d_2}{d_1}  = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
 
:$$\frac{d_2}{d_1}  = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2}
 
   \hspace{0.15cm} \underline {= 1.414}  
 
   \hspace{0.15cm} \underline {= 1.414}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
 
*Die Konstante $K$ ist lediglich eine Hilfsgröße, die nicht weiter betrachtet werden muss.
 
 
  
  
'''(8)'''&nbsp; Aus&nbsp; $d_2/d_1 = 2^{-0.5}$&nbsp; und&nbsp; $\Delta d = d_2 \, - d_1 = 300 \ \rm m$&nbsp; folgt schließlich:
+
'''(8)'''&nbsp; From &nbsp; $d_2/d_1 = 2^{-0.5}$&nbsp; and&nbsp; $\Delta d = d_2 \, - d_1 = 300 \ \rm m$&nbsp; finally follows:
 
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
:$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   d_1 = \frac{300\,{\rm m}}{\sqrt{2}  - 1}  \hspace{0.15cm} \underline {= 724\,{\rm m}}  
 
   d_1 = \frac{300\,{\rm m}}{\sqrt{2}  - 1}  \hspace{0.15cm} \underline {= 724\,{\rm m}}  
Line 143: Line 142:
  
  
 
+
[[Category:Mobile Communications: Exercises|^2.3 The GWSSUS Channel Model^]]
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
 

Latest revision as of 14:38, 23 March 2021

Mobile radio scenario with three paths

In  Exercise 2.5, a delay–Doppler function (or scatter function) was given.  From this, you should calculate and interpret the other system functions.  The given scatter function  $s(\tau_0, f_{\rm D})$  was

$$s(\tau_0, f_{\rm D}) =\frac{1}{\sqrt{2}} \cdot \delta (\tau_0) \cdot \delta (f_{\rm D} - 100\,{\rm Hz}) \ - \ $$
$$\hspace{1.5cm} \ - \ \hspace{-0.2cm} \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D} \hspace{-0.05cm}- \hspace{-0.05cm}50\,{\rm Hz}) \ - \frac{1}{2} \cdot \delta (\tau_0 \hspace{-0.05cm}- \hspace{-0.05cm}1\,{\rm \mu s}) \cdot \delta (f_{\rm D}\hspace{-0.05cm} + \hspace{-0.05cm}50\,{\rm Hz}) \hspace{0.05cm}.$$


Note:   In our learning tutorial,  $s(\tau_0, \hspace{0.05cm} f_{\rm D})$  is also identified with  $\eta_{\rm VD}(\tau_0, \hspace{0.05cm}f_{\rm D})$.

Here we have replaced the delay variable  $\tau$  with  $\tau_0$ .  The new variable  $\tau_0$  describes the difference between the delay of a path and the delay  $\tau_1$  of the main path.  The main path is thus identified in the above equation by  $\tau_0 = 0$.

Now, we try to find a mobile radio scenario in which this scatter function would actually occur.  The basic structure is sketched above as a top view, and the following hold:

  • A single frequency is transmitted:  $f_{\rm S} = 2 \ \rm GHz$.
  • The mobile receiver  $\rm (E)$  is represented here by a yellow dot.  It is not known whether the vehicle is stationary, moving towards the transmitter  $\rm (S)$  or moving away.
  • The signal reaches the receiver via a main path (red) and two secondary paths (blue and green).  Reflections from the obstacles cause phase shifts of  $\pi$.
  • ${\rm S}_2$  and  ${\rm S}_3$  are to be understood here as fictitious transmitters from whose position the angles of incidence  $\alpha_2$  and  $\alpha_3$  of the secondary paths can be determined.
  • Let the signal frequency be  $f_{\rm S}$,  the angle of incidence  $\alpha$, the velocity  $v$  and the velocity of light  $c = 3 \cdot 10^8 \ \rm m/s$.  Then, the Doppler frequency is
$$f_{\rm D}= {v}/{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm}.$$
  • The damping factors  $k_1$,  $k_2$  and  $k_3$  are inversely proportional to the path lengths  $d_1$,  $d_2$  and  $d_3$. This corresponds to the path loss exponent  $\gamma = 2$.
  • This means:   The signal power decreases quadratically with distance  $d$  and accordingly the signal amplitude decreases linearly with  $d$.




Notes:



Questionnaire

1

At first, consider only the Dirac function at  $\tau = 0$  and  $f_{\rm D} = 100 \ \rm Hz$.  Which statements apply to the receiver?

The receiver is standing.
The receiver moves directly towards the transmitter.
The receiver moves away in the opposite direction to the transmitter.

2

What is the vehicle speed?

$v \ = \ $

$\ \ \rm km/h$

3

Which statements apply to the Dirac at  $\tau_0 = 1 \ \ \rm µ s$  and  $f_{\rm D} = +50 \ \ \rm Hz$?

This Dirac comes from the blue path.
This Dirac comes from the green path.
The angle  is  $30^\circ$.
The angle  is  $60^\circ$.

4

What statements apply to the green path?

We have $\tau_0 = 1 \ \rm µ s$  and  $f_{\rm D} = -50 \ \rm Hz$.
The angle  $\alpha_3$  (see graph) is  $60^\circ$.
The angle  $\alpha_3$  is  $240^\circ$.

5

Which of the following relations hold between the two side paths?

$d_3 = d_2$.
$k_3 = k_2$.
$\tau_3 = \tau_2$.

6

What is the difference  $\Delta d = d_2 - d_1$  in time?

$\Delta d \ = \ $

$\ \ \rm m$

7

What is the relationship between  $d_2$  and  $d_1$?

$d_2/d_1 \ = \ $

8

Find the distances  $d_1$  and  $d_2$ .

$d_1 \ = \ $

$\ \rm m$
$d_2 \ = \ $

$\ \rm m$


Solution

(1)  The Doppler frequency is positive for  $\tau_0$.  This means that the receiver is moving towards the transmitter   ⇒   solution 2 is correct.


(2)  The equation for the Doppler frequency is

$$f_{\rm D}= \frac{v}{c} \cdot f_{\rm S} \cdot \cos(\alpha) \hspace{0.05cm}.$$
  • If the angle of incidence is  $\alpha=0$, then the Doppler frequency is
$$f_{\rm D}=\frac{v}{c}\cdot f_{\rm S}.$$
  • In this case the speed of the receiver is
$$v = \frac{f_{\rm D}}{f_{\rm S}} \cdot c = \frac{10^2\,{\rm Hz}}{2 \cdot 10^9\,{\rm Hz}} \cdot 3 \cdot 10^8\,{\rm m/s} = 15\,{\rm m/s} \hspace{0.1cm} \underline {= 54 \,{\rm km/h}} \hspace{0.05cm}.$$


(3)  Solutions 1 and 4 are correct:

  • The Doppler frequency $f_{\rm D} = 50 \ \rm Hz$  comes from the blue path, because the receiver moves towards the virtual transmitter  ${\rm S}_2$ (i.e., towards the reflection point), although not directly. 
  • In other words:  The movement of the receiver reduces the blue path's length.
  • The angle  $\alpha_2$  between the direction of movement and the connecting line  ${\rm S_2 – E}$  is  $60^\circ$:
$$\cos(\alpha_2) = \frac{f_{\rm D}}{f_{\rm S}} \cdot \frac{c}{v} = \frac{50 \,{\rm Hz}\cdot 3 \cdot 10^8\,{\rm m/s}}{2 \cdot 10^9\,{\rm Hz}\cdot 15\,{\rm m/s}} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha_2 \hspace{0.1cm} \underline {= 60^{\circ} } \hspace{0.05cm}.$$


(4)  Statements 1 and 3 are correct:  From  $f_{\rm D} = \, –50 \ \rm Hz$  follows  $\alpha_3 = \alpha_2 ± \pi$   ⇒   $\alpha_3 \ \underline {= 240^\circ}$.


(5)  All statements are correct:

  • The two Dirac functions at  $± 50 \ \ \rm Hz$  have the same delay.  We have  $\tau_3 = \tau_2 = \tau_1 + \tau_0$.
  • From the equality of the delays, however, it follows also  $d_3 = d_2$.
  • As both paths have the same length, their damping factors are equal, too.


(6)  The delay difference is  $\tau_0 = 1 \ \rm µ s$, as shown in the equation for  $s(\tau_0, f_{\rm D})$.  This gives the difference in length:

$$\Delta d = \tau_0 \cdot c = 10^{–6} {\rm s} \cdot 3 \cdot 10^8 \ \rm m/s \ \ \underline {= 300 \ \ \rm m}.$$


(7)  The path loss exponent was assumed to be  $\gamma = 2$  for this task.

  • Then  $k_1 = K/d_1$  and  $k_2 = K/d_2$.  The constant  $K$  is only an auxiliary variable that does not need to be considered further.
  • The minus sign takes into account the  $180^\circ$  phase rotation on the secondary paths.
  • From the weights of the Dirac functions one can read  $k_1 = \sqrt{0.5}$  and  $k_2 = -0.5$.  Therefore:
$$\frac{d_2}{d_1} = \frac{k_1}{-k_2} = \frac{1/\sqrt{2}}{0.5} = \sqrt{2} \hspace{0.15cm} \underline {= 1.414} \hspace{0.05cm}.$$


(8)  From   $d_2/d_1 = 2^{-0.5}$  and  $\Delta d = d_2 \, - d_1 = 300 \ \rm m$  finally follows:

$$\sqrt{2} \cdot d_1 - d_1 = 300\,{\rm m} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_1 = \frac{300\,{\rm m}}{\sqrt{2} - 1} \hspace{0.15cm} \underline {= 724\,{\rm m}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d_2 = \sqrt{2} \cdot d_1 \hspace{0.15cm} \underline {= 1024\,{\rm m}} \hspace{0.05cm}. $$