Difference between revisions of "Aufgaben:Exercise 2.6: GF(P power m). Which P, which m?"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
 
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2510__KC_A_2_6_neu.png|right|frame|Underlying tables for addition and multiplication]]
+
[[File:P_ID2510__KC_A_2_6_neu.png|right|frame|Underlying tables for <br>addition and multiplication]]
 
A Galois field&nbsp; ${\rm GF}(q)$&nbsp; with&nbsp; $q = P^m$&nbsp; elements defined by the adjacent tables is to be analyzed
 
A Galois field&nbsp; ${\rm GF}(q)$&nbsp; with&nbsp; $q = P^m$&nbsp; elements defined by the adjacent tables is to be analyzed
*for addition&nbsp; (marked with "$+$"),&nbsp; and  
+
*for addition&nbsp; $($marked with "$+$"$)$,&nbsp; and
*for multiplication&nbsp; (marked with "$\hspace{0.05cm}\cdot\hspace{0.05cm}$").  
+
 +
*for multiplication&nbsp; $($marked with "$\hspace{0.05cm}\cdot\hspace{0.05cm}$)".  
  
  
This Galois field&nbsp; ${\rm GF}(q) = \{\hspace{0.1cm}z_0,\hspace{0.1cm} z_1,\hspace{0.05cm}  \text{...} , \hspace{0.1cm}z_{q-1}\}$&nbsp; satisfies all the requirements for a finite field listed in the chapter&nbsp; [[Channel_Coding/Some_Basics_of_Algebra|"Some Basics of Algebra"]]&nbsp;. Thus, commutative, associative and distributive laws are also satisfied.  
+
This Galois field &nbsp; ${\rm GF}(q) = \{\hspace{0.1cm}z_0,\hspace{0.1cm} z_1,\hspace{0.05cm}  \text{...} , \hspace{0.1cm}z_{q-1}\}$ &nbsp; satisfies all the requirements for a finite field listed in the chapter&nbsp; [[Channel_Coding/Some_Basics_of_Algebra|"Some Basics of Algebra"]]&nbsp;. Thus,&nbsp; commutative, associative and distributive laws are also satisfied.  
  
 
Furthermore there is
 
Furthermore there is
Line 20: Line 21:
 
* for all elements&nbsp; $z_i$&nbsp; an additive inverse &nbsp; &#8658; &nbsp; ${\rm Inv_A}(z_i)$:
 
* for all elements&nbsp; $z_i$&nbsp; an additive inverse &nbsp; &#8658; &nbsp; ${\rm Inv_A}(z_i)$:
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q)\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}$$
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q)\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}$$
::$$z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "0"}\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm}
+
::$$z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "\hspace{-0.15cm}0\hspace{-0.1cm}"}\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm}
 
{\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}, $$
 
{\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}, $$
 
* for all elements&nbsp; $z_i$&nbsp; except the zero element a multiplicative inverse &nbsp;&#8658;&nbsp; ${\rm Inv_M}(z_i)$:
 
* for all elements&nbsp; $z_i$&nbsp; except the zero element a multiplicative inverse &nbsp;&#8658;&nbsp; ${\rm Inv_M}(z_i)$:
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A} \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}$$
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A} \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}$$
::$$z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "1"}
+
::$$z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "\hspace{-0.15cm}1\hspace{-0.1cm}"}
 
\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm}
 
\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm}
 
{\rm Inv_M}(z_i) = z_i^{-1}
 
{\rm Inv_M}(z_i) = z_i^{-1}
Line 31: Line 32:
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension Field"]].
 +
 +
* In the tables,&nbsp; the elements &nbsp; $z_0, \hspace{0.05cm}  \text{...}  \hspace{0.1cm} , \ z_8$ &nbsp; are called&nbsp; "coefficient vectors".
  
 
+
* For example,&nbsp; "$2 \hspace{0.03cm}1$"&nbsp; stands for&nbsp; "$2 \cdot \alpha + 1$".
 
 
 
 
 
 
Hints:
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field| "extension field"]].
 
* In the tables, the elements&nbsp; $z_0, \hspace{0.05cm}  \text{...}  \hspace{0.1cm} , \ z_8$&nbsp; are called coefficient vectors. For example, "$2 \hspace{0.03cm}1$" stands for "$2 \cdot \alpha + 1$".
 
 
   
 
   
  
Line 68: Line 67:
 
- It holds&nbsp; ${\rm Inv_A} ($"$2\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}0$".
 
- It holds&nbsp; ${\rm Inv_A} ($"$2\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}0$".
  
{Which of the following statements are true about multiplication?
+
{Which of the following statements are true about the  multiplication?
 
|type="()"}
 
|type="()"}
- The multiplication is modulo&nbsp; $p(\alpha) = \alpha^2 + 2$.
+
- The multiplication is defined here modulo&nbsp; $p(\alpha) = \alpha^2 + 2$.
+ The multiplication is modulo&nbsp; $p(\alpha) = \alpha^2 + 2\alpha + 2$.
+
+ The multiplication is defined here  modulo&nbsp; $p(\alpha) = \alpha^2 + 2\alpha + 2$.
  
 
{What statements are true regarding multiplicative inverses?
 
{What statements are true regarding multiplicative inverses?
Line 77: Line 76:
 
- There is a multiplicative inverse for all elements&nbsp; $z_i &#8712; {\rm GF}(P^m)$&nbsp; .
 
- There is a multiplicative inverse for all elements&nbsp; $z_i &#8712; {\rm GF}(P^m)$&nbsp; .
 
+ It holds&nbsp; ${\rm Inv_M} ($"$1\hspace{0.03cm}2$") $\, = \, $"$1\hspace{0.03cm}0$".
 
+ It holds&nbsp; ${\rm Inv_M} ($"$1\hspace{0.03cm}2$") $\, = \, $"$1\hspace{0.03cm}0$".
- It holds&nbsp; ${\rm Inv_A} ($"$2\hspace{0.03cm}1$") $\, = \, $ "$1\hspace{0.03cm}2$".
+
- It holds&nbsp; ${\rm Inv_M} ($"$2\hspace{0.03cm}1$") $\, = \, $ "$1\hspace{0.03cm}2$".
  
{Does ("$2\hspace{0.03cm}0$" $\, + \,$ "$1\hspace{0.03cm}2$") $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, = \, $"$2\hspace{0.03cm}0$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, + \, $"$1\hspace{0.03cm}2$"  $\, \cdot\, $ "$1\hspace{0.03cm}2$" hold?
+
{Does&nbsp;  $($"$2\hspace{0.03cm}0$" $\, + \,$ "$1\hspace{0.03cm}2$"$)$ $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, = \, $"$2\hspace{0.03cm}0$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, + \, $"$1\hspace{0.03cm}2$"  $\, \cdot\, $ "$1\hspace{0.03cm}2$" hold?
 
|type="()"}
 
|type="()"}
 
+ Yes.
 
+ Yes.

Revision as of 14:40, 4 October 2022

Underlying tables for
addition and multiplication

A Galois field  ${\rm GF}(q)$  with  $q = P^m$  elements defined by the adjacent tables is to be analyzed

  • for addition  $($marked with "$+$"$)$,  and
  • for multiplication  $($marked with "$\hspace{0.05cm}\cdot\hspace{0.05cm}$)".


This Galois field   ${\rm GF}(q) = \{\hspace{0.1cm}z_0,\hspace{0.1cm} z_1,\hspace{0.05cm} \text{...} , \hspace{0.1cm}z_{q-1}\}$   satisfies all the requirements for a finite field listed in the chapter  "Some Basics of Algebra" . Thus,  commutative, associative and distributive laws are also satisfied.

Furthermore there is

  • a neutral element with respect to addition   ⇒   $N_{\rm A}$:
$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_j = N_{\rm A} \hspace{0.25cm}{\rm (zero\hspace{0.15cm}element)} \hspace{0.05cm},$$
  • a neutral element with respect to multiplication   ⇒   $N_{\rm M}$:
$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_j = N_{\rm M} \hspace{0.25cm}{\rm (identity\hspace{0.15cm}element)} \hspace{0.05cm},$$
  • for all elements  $z_i$  an additive inverse   ⇒   ${\rm Inv_A}(z_i)$:
$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q)\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}$$
$$z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "\hspace{-0.15cm}0\hspace{-0.1cm}"}\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm} {\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}, $$
  • for all elements  $z_i$  except the zero element a multiplicative inverse  ⇒  ${\rm Inv_M}(z_i)$:
$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A} \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}$$
$$z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "\hspace{-0.15cm}1\hspace{-0.1cm}"} \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm} {\rm Inv_M}(z_i) = z_i^{-1} \hspace{0.05cm}. $$


Hints:

  • In the tables,  the elements   $z_0, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \ z_8$   are called  "coefficient vectors".
  • For example,  "$2 \hspace{0.03cm}1$"  stands for  "$2 \cdot \alpha + 1$".



Questions

1

Specify the parameters of the Galois field considered here.

$P \ = \ $

$m \ = \ $

$q \ = \ $

2

What is the neutral element of addition?

The neutral element of addition is  $N_{\rm A} = \,$ "$0\hspace{0.03cm}0$",
The neutral element of addition is  $N_{\rm A} = \,$ "$0\hspace{0.03cm}1$".

3

What is the neutral element of multiplication?

The neutral element of multiplication is  $N_{\rm M} = \,$ "$0\hspace{0.03cm}0$",
The neutral element of multiplication is  $N_{\rm M} = \,$ "$0\hspace{0.03cm}1$".

4

What statements are true regarding additive inverses?

It holds  ${\rm Inv_A} ($"$0\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}1$",
It holds  ${\rm Inv_A} ($"$1\hspace{0.03cm}1$") $\, = \, $ "$2\hspace{0.03cm}2$",
It holds  ${\rm Inv_A} ($"$2\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}0$".

5

Which of the following statements are true about the multiplication?

The multiplication is defined here modulo  $p(\alpha) = \alpha^2 + 2$.
The multiplication is defined here modulo  $p(\alpha) = \alpha^2 + 2\alpha + 2$.

6

What statements are true regarding multiplicative inverses?

There is a multiplicative inverse for all elements  $z_i ∈ {\rm GF}(P^m)$  .
It holds  ${\rm Inv_M} ($"$1\hspace{0.03cm}2$") $\, = \, $"$1\hspace{0.03cm}0$".
It holds  ${\rm Inv_M} ($"$2\hspace{0.03cm}1$") $\, = \, $ "$1\hspace{0.03cm}2$".

7

Does  $($"$2\hspace{0.03cm}0$" $\, + \,$ "$1\hspace{0.03cm}2$"$)$ $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, = \, $"$2\hspace{0.03cm}0$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, + \, $"$1\hspace{0.03cm}2$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" hold?

Yes.
No.


Solution

(1)  Each element consists of two ternaries   ⇒   $\underline{P = 3}, \ \underline{m = 2}$. There are $q = P^m = 3^8 = \underline{9 \rm \hspace{0.15cm}elements}$.


(2)  Correct is the proposed solution 1:

  • The neutral element of the addition $(N_{\rm A})$ satisfies for all $z_i ∈ {\rm GF}(P^m)$ the condition $z_i + N_{\rm A} = z_i$.
  • From the addition table it can be read that "$0\hspace{0.03cm}0$" satisfies this condition.


(3)  Correct is the proposed solution 2:

  • The neutral element of the multiplication $(N_{\rm M})$ must always satisfy the condition $z_i \cdot N_{\rm M} = z_i$.
  • From the multiplication table, $N_{\rm M} = \, "0\hspace{0.03cm}1"$.
  • In polynomial notation, this corresponds to $k_1 = 0$ and $k_0 = 1$:
$$k_1 \cdot \alpha + k_0 = 1 \hspace{0.05cm}.$$


(4)  With the polynomial representation, the following calculations result:

$${\rm Inv_A}("\hspace{-0.05cm}0\hspace{0.03cm}2") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = 1 \hspace{0.25cm}\Rightarrow \hspace{0.25cm}{\rm Vector}\hspace{0.15cm}"\hspace{-0.05cm}0\hspace{0.03cm}1"\hspace{0.05cm},$$
$${\rm Inv_A}("\hspace{-0.05cm}1\hspace{0.03cm}1")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(\alpha + 1) = \big[(-\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] + \big[(-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =2\alpha + 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Vector}\hspace{0.15cm}"\hspace{-0.05cm}2\hspace{0.03cm}2"\hspace{0.05cm},$$
$${\rm Inv_A}("\hspace{-0.05cm}2\hspace{0.03cm}2")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2\alpha + 2) = \big[(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] + \big[(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =\alpha + 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Vector}\hspace{0.15cm}"\hspace{-0.05cm}1\hspace{0.03cm}1"\hspace{0.05cm}.$$

Consequently, only the first two proposed solutions are correct.

However, the exercise can also be solved without calculation using the addition table alone.

  • For example, you can find the inverse of "$2\hspace{0.03cm}2$" by looking for the column with the entry "$0\hspace{0.03cm}0$" in the last row.
  • You find the column labeled "$1\hspace{0.03cm}1$" and thus ${\rm Inv_A}("2\hspace{0.03cm}2") = \, "1\hspace{0.03cm}1"$.


(5)  Multiplying $\alpha$ (vector "$1\hspace{0.03cm}0$") by itself gives $\alpha^2$.

  • If the first proposed solution were valid, the condition $\alpha^2 + 2 = 0$ and thus $\alpha^2 = (-2) \, {\rm mod} \, 3 = 1$, thus yielding the vector "$0\hspace{0.03cm}1$."
  • Assuming the second proposed solution, it follows from the condition $\alpha^2 + 2\alpha + 2 = 0$ in polynomial notation.
$$\alpha^2 = [(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3] + [(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3] = \alpha + 1 $$
and thus the coefficient vector "$1\hspace{0.03cm}1$".

In the multiplication table, in row 4, column 4, we find exactly the entry "$1\hspace{0.03cm}1$" → So, the correct one is proposed solution 2.


(6)  The multiplicative inverse to "$1\hspace{0.03cm}2$" can be found in row 6 of the multiplication table as the column with the entry "$0\hspace{0.03cm}1$"  
⇒  So the proposed solution 2 is correct in contrast to proposal 3. Namely, ${\rm Inv_M}("21") = \, "2\hspace{0.03cm}0"$ holds.

We check these results considering $\alpha^2 + 2\alpha + 2 = 0$ by multiplications:

$$"1\hspace{0.03cm}2" \hspace{0.05cm}\cdot \hspace{0.05cm}"1\hspace{0.03cm}0" \hspace{0.15cm} \Rightarrow \hspace{0.15cm} (\alpha + 2) \cdot \alpha = \alpha^2 + 2\alpha = (-2\alpha-2) + 2\alpha = -2 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = 1 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} {\rm Vector}\hspace{0.15cm}"0\hspace{0.03cm}1" \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm multiplicative \hspace{0.15cm}inverse}\hspace{0.05cm}.$$
$$"2\hspace{0.03cm}1" \hspace{0.05cm}\cdot \hspace{0.05cm}"1\hspace{0.03cm}2" "21" \hspace{0.05cm}\cdot \hspace{0.05cm} "12" \hspace{0.15cm} \Rightarrow \hspace{0.15cm} (2\alpha + 1) \cdot (\alpha + 2) = 2 \alpha^2 + \alpha + 4\alpha + 2 = 2 \alpha^2 + 5\alpha + 2 = 2 \cdot (-2\alpha - 2) + 5\alpha + 2 = (\alpha - 2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = \alpha +1 $$
$$\hspace{2.725cm} \Rightarrow \ {\rm Vector}\hspace{0.15cm}"1\hspace{0.03cm}1" \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm no\hspace{0.15cm}multiplicative \hspace{0.15cm}inverse}\hspace{0.05cm}.$$

The solution suggestion 1 is therefore not correct, because there is no multiplicative inverse for "$00$".


(7)  The two expressions agree   ⇒   YES, as the following calculations show:

$$("20" + "12") \ \cdot "12" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "02"\cdot "12" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "21"\hspace{0.05cm},$$
$$"20" \cdot "12" + "12" \cdot "12" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "02" + "22" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "21"\hspace{0.05cm}.$$

This means:   The distributive law has been proved at least on a single example.