Difference between revisions of "Aufgaben:Exercise 2.6: GF(P power m). Which P, which m?"

From LNTwww
m (Text replacement - "”" to """)
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2510__KC_A_2_6_neu.png|right|frame|Zugrunde liegende Tabellen für Addition und Multiplikation]]
+
[[File:P_ID2510__KC_A_2_6_neu.png|right|frame|Underlying tables for <br>addition and multiplication]]
Es soll ein Galoisfeld&nbsp; ${\rm GF}(q)$&nbsp; mit&nbsp; $q = P^m$&nbsp; Elementen analysiert werden, das durch die nebenstehenden Tabellen definiert ist
+
A Galois field&nbsp; ${\rm GF}(q)$&nbsp; with&nbsp; $q = P^m$&nbsp; elements defined by the adjacent tables is to be analyzed
*für Addition&nbsp; (gekennzeichnet mit "$+$"),&nbsp; und
+
*for addition&nbsp; $($marked with "$+$"$)$,&nbsp; and
*für Multiplikation&nbsp; (gekennzeichnet mit "$\hspace{0.05cm}\cdot\hspace{0.05cm}$").  
+
 +
*for multiplication&nbsp; $($marked with "$\hspace{0.05cm}\cdot\hspace{0.05cm}$)".  
  
  
Dieses Galoisfeld&nbsp; ${\rm GF}(q) = \{\hspace{0.1cm}z_0,\hspace{0.1cm} z_1,\hspace{0.05cm}  \text{...} , \hspace{0.1cm}z_{q-1}\}$&nbsp; erfüllt alle Anforderungen an einen endlichen Körper, die im Kapitel&nbsp; [[Channel_Coding/Einige_Grundlagen_der_Algebra|Einige Grundlagen der Algebra]]&nbsp; aufgeführt sind. So werden auch Kommutativ&ndash;, Assoziativ&ndash; und Distributivgesetz erfüllt.  
+
This Galois field &nbsp; ${\rm GF}(q) = \{\hspace{0.1cm}z_0,\hspace{0.1cm} z_1,\hspace{0.05cm}  \text{...} , \hspace{0.1cm}z_{q-1}\}$ &nbsp; satisfies all the requirements for a finite field listed in the chapter&nbsp; [[Channel_Coding/Some_Basics_of_Algebra|"Some Basics of Algebra"]]&nbsp;. Thus,&nbsp; commutative, associative and distributive laws are also satisfied.  
  
Weiterhin gibt es
+
Furthermore there is
* ein neutrales Element hinsichtlich Addition &nbsp; &#8658; &nbsp; $N_{\rm A}$:
+
* a neutral element with respect to addition &nbsp; &#8658; &nbsp; $N_{\rm A}$:
 
:$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
 
:$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
\hspace{0.25cm}z_i + z_j = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_j = N_{\rm A}  \hspace{0.25cm}{\rm (Nullelement)}
+
\hspace{0.25cm}z_i + z_j = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_j = N_{\rm A}  \hspace{0.25cm}{\rm (zero\hspace{0.15cm}element)}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
* ein neutrales Element hinsichtlich Multiplikation &nbsp; &#8658; &nbsp; $N_{\rm M}$:
+
* a neutral element with respect to multiplication &nbsp; &#8658; &nbsp; $N_{\rm M}$:
 
:$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
 
:$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:}
\hspace{0.25cm}z_i \cdot z_j  = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  z_j = N_{\rm M}  \hspace{0.25cm}{\rm (Einselement)}
+
\hspace{0.25cm}z_i \cdot z_j  = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  z_j = N_{\rm M}  \hspace{0.25cm}{\rm (identity\hspace{0.15cm}element)}
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
* für alle Elemente&nbsp; $z_i$&nbsp; eine additive Inverse &nbsp; &#8658; &nbsp; ${\rm Inv_A}(z_i)$:
+
* for all elements&nbsp; $z_i$&nbsp; an additive inverse &nbsp; &#8658; &nbsp; ${\rm Inv_A}(z_i)$:
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q)\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}$$
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q)\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}$$
::$$z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "0"}\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm kurz}\text{:}\hspace{0.15cm}
+
::$$z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "\hspace{-0.15cm}0\hspace{-0.1cm}"}\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm}
 
{\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}, $$
 
{\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}, $$
* für alle Elemente&nbsp; $z_i$&nbsp; mit Ausnahme des Nullelements eine multiplikative Inverse &nbsp;&#8658;&nbsp; ${\rm Inv_M}(z_i)$:
+
* for all elements&nbsp; $z_i$&nbsp; except the zero element a multiplicative inverse &nbsp;&#8658;&nbsp; ${\rm Inv_M}(z_i)$:
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A} \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}$$
 
:$$\forall \hspace{0.15cm}  z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A} \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}$$
::$$z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "1"}
+
::$$z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "\hspace{-0.15cm}1\hspace{-0.1cm}"}
\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm kurz}\text{:}\hspace{0.15cm}
+
\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm}
 
{\rm Inv_M}(z_i) = z_i^{-1}
 
{\rm Inv_M}(z_i) = z_i^{-1}
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
Line 31: Line 32:
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension Field"]].
 +
 +
* In the tables,&nbsp; the elements &nbsp; $z_0, \hspace{0.05cm}  \text{...}  \hspace{0.1cm} , \ z_8$ &nbsp; are called&nbsp; "coefficient vectors".
  
 
+
* For example,&nbsp; "$2 \hspace{0.03cm}1$"&nbsp; stands for&nbsp; "$2 \cdot \alpha + 1$".
 
 
 
 
 
 
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel&nbsp; [[Channel_Coding/Erweiterungsk%C3%B6rper| Erweiterungskörper]].
 
* In den Tabellen sind die Elemente&nbsp; $z_0, \hspace{0.05cm}  \text{...}  \hspace{0.1cm} , \ z_8$&nbsp; als Koeffizientenvektoren bezeichnet. Zum Beispiel steht "$2\hspace{0.03cm}1$" für "$2 \cdot \alpha + 1$".
 
 
   
 
   
  
Line 44: Line 43:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Parameter des hier betrachteten Galoisfeldes an.
+
{Specify the parameters of the Galois field considered here.
 
|type="{}"}
 
|type="{}"}
 
$P \ = \ ${ 3 }
 
$P \ = \ ${ 3 }
Line 52: Line 51:
 
$q \ = \ ${ 9 }
 
$q \ = \ ${ 9 }
  
{Wie lautet das neutrale Element für die Addition?
+
{What is the neutral element of addition?
 
|type="()"}
 
|type="()"}
+ Das neutrale Element der Addition ist&nbsp; $N_{\rm A} = \,$ "$0\hspace{0.03cm}0$",
+
+ The neutral element of addition is&nbsp; $N_{\rm A} = \,$ "$0\hspace{0.03cm}0$",
- Das neutrale Element der Addition ist&nbsp; $N_{\rm A} = \,$ "$0\hspace{0.03cm}1$".
+
- The neutral element of addition is&nbsp; $N_{\rm A} = \,$ "$0\hspace{0.03cm}1$".
  
{Wie lautet das neutrale Element für die Multiplikation?
+
{What is the neutral element of multiplication?
 
|type="()"}
 
|type="()"}
- Das neutrale Element der Multiplikation ist&nbsp; $N_{\rm M} = \,$ "$0\hspace{0.03cm}0$",
+
- The neutral element of multiplication is&nbsp; $N_{\rm M} = \,$ "$0\hspace{0.03cm}0$",
+ Das neutrale Element der Multiplikation ist&nbsp; $N_{\rm M} = \,$ "$0\hspace{0.03cm}1$".
+
+ The neutral element of multiplication is&nbsp; $N_{\rm M} = \,$ "$0\hspace{0.03cm}1$".
  
{Welche Aussagen gelten hinsichtlich der additiven Inversen?
+
{What statements are true regarding additive inverses?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; ${\rm Inv_A} ($"$0\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}1$",
+
+ It holds&nbsp; ${\rm Inv_A} ($"$0\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}1$",
+ Es gilt&nbsp; ${\rm Inv_A} ($"$1\hspace{0.03cm}1$") $\, = \, $ "$2\hspace{0.03cm}2$",
+
+ It holds&nbsp; ${\rm Inv_A} ($"$1\hspace{0.03cm}1$") $\, = \, $ "$2\hspace{0.03cm}2$",
- Es gilt&nbsp; ${\rm Inv_A} ($"$2\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}0$".
+
- It holds&nbsp; ${\rm Inv_A} ($"$2\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}0$".
  
{Welche der folgenden Aussagen treffen für die Multiplikation zu?
+
{Which of the following statements are true about the  multiplication?
 
|type="()"}
 
|type="()"}
- Die Multiplikation erfolgt modulo&nbsp; $p(\alpha) = \alpha^2 + 2$.
+
- The multiplication is defined here modulo&nbsp; $p(\alpha) = \alpha^2 + 2$.
+ Die Multiplikation erfolgt modulo&nbsp; $p(\alpha) = \alpha^2 + 2\alpha + 2$.
+
+ The multiplication is defined here  modulo&nbsp; $p(\alpha) = \alpha^2 + 2\alpha + 2$.
  
{Welche Aussagen gelten hinsichtlich der multiplikativen Inversen?
+
{What statements are true regarding multiplicative inverses?
 
|type="[]"}
 
|type="[]"}
- Es gibt für alle Elemente&nbsp; $z_i &#8712; {\rm GF}(P^m)$&nbsp; eine multiplikative Inverse.
+
- There is a multiplicative inverse for all elements&nbsp; $z_i &#8712; {\rm GF}(P^m)$&nbsp; .
+ Es gilt&nbsp; ${\rm Inv_M} ($"$1\hspace{0.03cm}2$") $\, = \, $ "$1\hspace{0.03cm}0$".
+
+ It holds&nbsp; ${\rm Inv_M} ($"$1\hspace{0.03cm}2$") $\, = \, $"$1\hspace{0.03cm}0$".
- Es gilt&nbsp; ${\rm Inv_A} ($"$2\hspace{0.03cm}1$") $\, = \, $ "$1\hspace{0.03cm}2$".
+
- It holds&nbsp; ${\rm Inv_M} ($"$2\hspace{0.03cm}1$") $\, = \, $ "$1\hspace{0.03cm}2$".
  
{Gilt ("$2\hspace{0.03cm}0$" $\, + \,$ "$1\hspace{0.03cm}2$") $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, = \, $"$2\hspace{0.03cm}0$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, + \, $"$1\hspace{0.03cm}2$"  $\, \cdot\, $ "$1\hspace{0.03cm}2$"?
+
{Does&nbsp;  $($"$2\hspace{0.03cm}0$" $\, + \,$ "$1\hspace{0.03cm}2$"$)$ $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, = \, $"$2\hspace{0.03cm}0$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, + \, $"$1\hspace{0.03cm}2$"  $\, \cdot\, $ "$1\hspace{0.03cm}2$" hold?
 
|type="()"}
 
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Jedes Element besteht aus zwei Ternärzahlen &nbsp; &#8658; &nbsp; $\underline{P = 3}, \ \underline{m = 2}$. Es gibt $q = P^m = 3^8 = \underline{9 \ \rm Elemente}$.
+
'''(1)'''&nbsp; Each element consists of two ternaries &nbsp; &#8658; &nbsp; $\underline{P = 3}, \ \underline{m = 2}$.&nbsp; There are&nbsp; $q = P^m = 3^8 = \underline{9 \rm \hspace{0.2cm}elements}$.
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>proposed solution 1</u>:
*Das neutrale Element der Addition $(N_{\rm A})$ erfüllt für alle $z_i &#8712; {\rm GF}(P^m)$ die Bedingung $z_i + N_{\rm A} = z_i$.  
+
*The neutral element of the addition &nbsp;  $(N_{\rm A})$&nbsp; satisfies for all&nbsp; $z_i &#8712; {\rm GF}(P^m)$&nbsp; the condition&nbsp; $z_i + N_{\rm A} = z_i$.  
*Aus der Additionstabelle kann abgelesen werden, dass "$0\hspace{0.03cm}0$" diese Bedingung erfült.
+
*From the addition table it can be read that&nbsp; "$0\hspace{0.03cm}0$"&nbsp; satisfies this condition.
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(3)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
*Das neutrale Element der Multiplikation $(N_{\rm M})$ muss stets die Bedingung $z_i \cdot N_{\rm M} = z_i$ erfüllen.  
+
*The neutral element of the multiplication &nbsp;  $(N_{\rm M})$&nbsp; must always satisfy the condition&nbsp; $z_i \cdot N_{\rm M} = z_i$.
*Aus der Multiplikationstabelle ergibt sich $N_{\rm M} = \, "0\hspace{0.03cm}1"$.
+
* In der Polynomschreibweise entspricht dies mit $k_1 = 0$ und $k_0 = 1$:
+
*From the multiplication table,&nbsp; $N_{\rm M} = \, "\hspace{-0.15cm}0\hspace{0.03cm}1\hspace{-0.1cm}"$.
 +
 
 +
*In polynomial notation,&nbsp; this corresponds to&nbsp; $k_1 = 0$&nbsp; and&nbsp; $k_0 = 1$:
 
:$$k_1 \cdot \alpha + k_0 = 1 \hspace{0.05cm}.$$
 
:$$k_1 \cdot \alpha + k_0 = 1 \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Mit der Polynomdarstellung ergeben sich folgende Berechnungen:
+
'''(4)'''&nbsp; With the polynomial representation,&nbsp; the following calculations result:
:$${\rm Inv_A}("\hspace{-0.05cm}0\hspace{0.03cm}2") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = 1 \hspace{0.25cm}\Rightarrow \hspace{0.25cm}{\rm Vektor}\hspace{0.15cm}"\hspace{-0.05cm}0\hspace{0.03cm}1"\hspace{0.05cm},$$
+
:$${\rm Inv_A}("\hspace{-0.05cm}0\hspace{0.03cm}2") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = 1 \hspace{0.25cm}\Rightarrow \hspace{0.25cm}{\rm vector}\hspace{0.15cm}"\hspace{-0.1cm}0\hspace{0.03cm}1\hspace{-0.1cm}"\hspace{0.05cm},$$
 
:$${\rm Inv_A}("\hspace{-0.05cm}1\hspace{0.03cm}1")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(\alpha + 1) = \big[(-\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] +  
 
:$${\rm Inv_A}("\hspace{-0.05cm}1\hspace{0.03cm}1")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(\alpha + 1) = \big[(-\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] +  
\big[(-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =2\alpha + 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Vektor}\hspace{0.15cm}"\hspace{-0.05cm}2\hspace{0.03cm}2"\hspace{0.05cm},$$
+
\big[(-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =2\alpha + 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}\hspace{-0.05cm}2\hspace{0.03cm}2\hspace{-0.1cm}"\hspace{0.05cm},$$
 
:$${\rm Inv_A}("\hspace{-0.05cm}2\hspace{0.03cm}2")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2\alpha + 2) = \big[(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] +  
 
:$${\rm Inv_A}("\hspace{-0.05cm}2\hspace{0.03cm}2")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2\alpha + 2) = \big[(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] +  
\big[(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =\alpha + 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm Vektor}\hspace{0.15cm}"\hspace{-0.05cm}1\hspace{0.03cm}1"\hspace{0.05cm}.$$
+
\big[(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =\alpha + 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}\hspace{-0.05cm}1\hspace{0.03cm}1\hspace{-0.1cm}"\hspace{0.05cm}.$$
  
Demzufolge sind nur die <u>beiden ersten Lösungsvorschläge</u> richtig.  
+
Consequently,&nbsp; only the&nbsp; <u>first two proposed solutions</u>&nbsp; are correct.
 +
 
 +
However,&nbsp; the exercise can also be solved without calculation using the addition table alone:
 +
*For example,&nbsp; you can find the inverse of&nbsp; "$2\hspace{0.03cm}2$"&nbsp; by looking for the column with the entry&nbsp; "$0\hspace{0.03cm}0$"&nbsp; in the last row.
 +
 +
*You find the column labeled&nbsp; "$1\hspace{0.03cm}1$"&nbsp; and thus&nbsp; ${\rm Inv_A}("\hspace{-0.15cm}2\hspace{0.03cm}2\hspace{-0.15cm}") = \, "\hspace{-0.15cm}1\hspace{0.03cm}1\hspace{-0.15cm}"$.
  
Die Aufgabe kann aber auch ohne Rechnung allein anhand der Additionstabelle gelöst werden.
 
*Beispielsweise findet man die Inverse zu "$2\hspace{0.03cm}2$", indem man in der letzten Zeile die Spalte mit dem Eintrag "$0\hspace{0.03cm}0$" sucht.
 
*Man findet die mit "$1\hspace{0.03cm}1$" bezeichnete Spalte und damit ${\rm Inv_A}("2\hspace{0.03cm}2") = \, "1\hspace{0.03cm}1"$.
 
  
 +
'''(5)'''&nbsp; Multiplying&nbsp; $\alpha$&nbsp; $($vector "$1\hspace{0.03cm}0$"$)$&nbsp; by itself gives&nbsp; $\alpha^2$.
 +
* If the first proposed solution were valid,&nbsp; the condition&nbsp; $\alpha^2 + 2 = 0$&nbsp; and thus&nbsp; $\alpha^2 = (-2) \, {\rm mod} \, 3 = 1$,&nbsp; thus yielding the vector&nbsp; "$0\hspace{0.03cm}1$".
  
'''(5)'''&nbsp; Die Multiplikation von $\alpha$ (Vektor "$1\hspace{0.03cm}0$") mit sich selbst ergibt $\alpha^2$.
+
* Assuming the second proposed solution,&nbsp; it follows from the condition&nbsp; $\alpha^2 + 2\alpha + 2 = 0$ &nbsp; in polynomial notation:
* Würde der erste Lösungsvorschlag gültig sein, so müsste sich aus der Bedingung $\alpha^2 + 2 = 0$ und damit $\alpha^2 = (-2) \, {\rm mod} \, 3 = 1$ ergeben, also der Vektor "$0\hspace{0.03cm}1$".
+
:$$\alpha^2 = \big [(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] + \big[(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big ] = \alpha + 1 $$
* Geht man vom zweiten Lösungsvorschlag aus, so folgt aus der Bedingung $\alpha^2 + 2\alpha + 2 = 0$ in der Polynomschreibweise
+
:and thus the coefficient vector&nbsp; "$1\hspace{0.03cm}1$".
:$$\alpha^2 = [(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3] + [(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3] = \alpha + 1 $$
 
:und damit der Koeffizientenvektor "$1\hspace{0.03cm}1$".
 
  
In der Multiplikationstabelle findet man in Zeile 4, Spalte 4 genau den Eintrag "$1\hspace{0.03cm}1$" &#8594; Richtig ist also der <u>Lösungsvorschlag 2</u>.
+
*In the multiplication table,&nbsp; in row 4, column 4,&nbsp; we find exactly the entry&nbsp; "$1\hspace{0.03cm}1$" &nbsp; &rArr; &nbsp; So,&nbsp; the correct answert is the&nbsp; <u>proposed solution 2</u>.
  
  
'''(6)'''&nbsp; Die multiplikative Inverse zu "$1\hspace{0.03cm}2$" findet man in der Zeile 6 der Multiplikationstabelle als diejenige Spalte mit dem Eintrag "$0\hspace{0.03cm}1$" &nbsp;<br>&#8658;&nbsp; Der <u>Lösungsvorschlag 2</u> ist also richtig im Gegensatz zu Vorschlag 3. Es gilt nämlich ${\rm Inv_M}("21") = \, "2\hspace{0.03cm}0"$.
+
'''(6)'''&nbsp; The multiplicative inverse to&nbsp; "$1\hspace{0.03cm}2$"&nbsp; can be found in row 6 of the multiplication table as the column with the entry&nbsp; "$0\hspace{0.03cm}1$" &nbsp;
 +
*So the&nbsp; <u>proposed solution 2</u>&nbsp; is correct in contrast to proposal 3.&nbsp; Namely,&nbsp; ${\rm Inv_M}("\hspace{-0.15cm}21\hspace{-0.15cm}") = \, "\hspace{-0.15cm}2\hspace{0.03cm}0\hspace{-0.1cm}"$ holds.
  
Wir überprüfen diese Ergebnisse unter Berücksichtigung von $\alpha^2 + 2\alpha + 2 = 0$ durch Multiplikationen:
+
*We check these results considering&nbsp; $\alpha^2 + 2\alpha + 2 = 0$&nbsp; by multiplications:
:$$"1\hspace{0.03cm}2" \hspace{0.05cm}\cdot \hspace{0.05cm}"1\hspace{0.03cm}0" \hspace{0.15cm}  \Rightarrow  \hspace{0.15cm} (\alpha + 2) \cdot \alpha = \alpha^2 + 2\alpha = (-2\alpha-2) + 2\alpha = -2 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 =  1 \hspace{0.15cm} \Rightarrow  \hspace{0.15cm} {\rm Vektor}\hspace{0.15cm}"0\hspace{0.03cm}1" \hspace{0.15cm} \Rightarrow  \hspace{0.15cm}{\rm multiplikative \hspace{0.15cm}Inverse}\hspace{0.05cm}.$$
+
:$$"\hspace{-0.15cm}1\hspace{0.03cm}2\hspace{-0.1cm}" \hspace{0.05cm}\cdot \hspace{0.05cm}"\hspace{-0.15cm}1\hspace{0.03cm}0\hspace{-0.1cm}" \hspace{0.15cm}  \Rightarrow  \hspace{0.15cm} (\alpha + 2) \cdot \alpha = \alpha^2 + 2\alpha = (-2\alpha-2) + 2\alpha = -2 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 =  1 \hspace{0.15cm} \Rightarrow  \hspace{0.15cm} {\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}0\hspace{0.03cm}1\hspace{-0.15cm}" \hspace{0.15cm} \Rightarrow  \hspace{0.15cm}{\rm multiplicative \hspace{0.15cm}inverse}\hspace{0.05cm}.$$
:$$"2\hspace{0.03cm}1" \hspace{0.05cm}\cdot \hspace{0.05cm}"1\hspace{0.03cm}2"
+
:$$"\hspace{-0.15cm}2\hspace{0.03cm}1\hspace{-0.1cm}" \hspace{0.05cm}\cdot \hspace{0.05cm}"\hspace{-0.15cm}1\hspace{0.03cm}2\hspace{-0.1cm}" \hspace{0.15cm}  \Rightarrow  \hspace{0.15cm} (2\alpha + 1) \cdot (\alpha + 2) = 2 \alpha^2 + \alpha + 4\alpha  + 2 =  2 \alpha^2 + 5\alpha  + 2 = 2 \cdot (-2\alpha  - 2) + 5\alpha  + 2 = (\alpha  - 2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 =  \alpha  +1 $$
"21" \hspace{0.05cm}\cdot \hspace{0.05cm} "12" \hspace{0.15cm}  \Rightarrow  \hspace{0.15cm} (2\alpha + 1) \cdot (\alpha + 2) = 2 \alpha^2 + \alpha + 4\alpha  + 2 =  2 \alpha^2 + 5\alpha  + 2 = 2 \cdot (-2\alpha  - 2) + 5\alpha  + 2 = (\alpha  - 2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 =  \alpha  +1 $$
+
:$$\hspace{2.725cm} \Rightarrow \ {\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}1\hspace{0.03cm}1\hspace{-0.15cm}" \hspace{0.15cm} \Rightarrow  \hspace{0.15cm}{\rm no\hspace{0.15cm}multiplicative \hspace{0.15cm}inverse}\hspace{0.05cm}.$$
:$$\hspace{2.725cm} \Rightarrow \ {\rm Vektor}\hspace{0.15cm}"1\hspace{0.03cm}1" \hspace{0.15cm} \Rightarrow  \hspace{0.15cm}{\rm keine \hspace{0.15cm}multiplikative \hspace{0.15cm}Inverse}\hspace{0.05cm}.$$
 
  
Der Lösungsvorschlag 1 ist deshalb nicht richtig, weil es für "$00$" keine multiplikative Inverse gibt.
+
*The solution suggestion 1 is therefore not correct,&nbsp; because there is no multiplicative inverse for&nbsp; "$00$".
  
  
'''(7)'''&nbsp; Die beiden Ausdrücke stimmen überein &nbsp; &#8658; &nbsp; <u>JA</u>, wie die folgenden Berechnungen zeigen:
+
'''(7)'''&nbsp; The two expressions agree &nbsp; &#8658; &nbsp; <u>YES</u>, as the following calculations show:
:$$("20" + "12") \ \cdot "12" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "02"\cdot "12" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "21"\hspace{0.05cm},$$
+
:$$("\hspace{-0.15cm}20\hspace{-0.1cm}" + "\hspace{-0.15cm}12\hspace{-0.1cm}") \ \cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}02\hspace{-0.1cm}"\cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}21\hspace{-0.1cm}"\hspace{0.05cm},$$
:$$"20" \cdot  "12" + "12" \cdot "12" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "02" + "22" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "21"\hspace{0.05cm}.$$
+
:$$"\hspace{-0.15cm}20\hspace{-0.1cm}" \cdot  "\hspace{-0.15cm}12\hspace{-0.1cm}" + "\hspace{-0.15cm}12\hspace{-0.1cm}" \cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}02\hspace{-0.1cm}" + "\hspace{-0.15cm}22\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}21\hspace{-0.1cm}"\hspace{0.05cm}.$$
  
Das bedeutet: &nbsp; Das Distributivgesetz wurde zumindest an einem einzigen Beispiel nachgewiesen.
+
This means: &nbsp; The distributive law has been proved at least on a single example.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Channel Coding: Exercises|^2.2 Erweiterungskörper^]]
+
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]]

Latest revision as of 15:29, 4 October 2022

Underlying tables for
addition and multiplication

A Galois field  ${\rm GF}(q)$  with  $q = P^m$  elements defined by the adjacent tables is to be analyzed

  • for addition  $($marked with "$+$"$)$,  and
  • for multiplication  $($marked with "$\hspace{0.05cm}\cdot\hspace{0.05cm}$)".


This Galois field   ${\rm GF}(q) = \{\hspace{0.1cm}z_0,\hspace{0.1cm} z_1,\hspace{0.05cm} \text{...} , \hspace{0.1cm}z_{q-1}\}$   satisfies all the requirements for a finite field listed in the chapter  "Some Basics of Algebra" . Thus,  commutative, associative and distributive laws are also satisfied.

Furthermore there is

  • a neutral element with respect to addition   ⇒   $N_{\rm A}$:
$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_j = N_{\rm A} \hspace{0.25cm}{\rm (zero\hspace{0.15cm}element)} \hspace{0.05cm},$$
  • a neutral element with respect to multiplication   ⇒   $N_{\rm M}$:
$$\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z_j = N_{\rm M} \hspace{0.25cm}{\rm (identity\hspace{0.15cm}element)} \hspace{0.05cm},$$
  • for all elements  $z_i$  an additive inverse   ⇒   ${\rm Inv_A}(z_i)$:
$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q)\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:}$$
$$z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {\rm "\hspace{-0.15cm}0\hspace{-0.1cm}"}\hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm} {\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}, $$
  • for all elements  $z_i$  except the zero element a multiplicative inverse  ⇒  ${\rm Inv_M}(z_i)$:
$$\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A} \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:}$$
$$z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {\rm "\hspace{-0.15cm}1\hspace{-0.1cm}"} \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm short}\text{:}\hspace{0.15cm} {\rm Inv_M}(z_i) = z_i^{-1} \hspace{0.05cm}. $$


Hints:

  • In the tables,  the elements   $z_0, \hspace{0.05cm} \text{...} \hspace{0.1cm} , \ z_8$   are called  "coefficient vectors".
  • For example,  "$2 \hspace{0.03cm}1$"  stands for  "$2 \cdot \alpha + 1$".



Questions

1

Specify the parameters of the Galois field considered here.

$P \ = \ $

$m \ = \ $

$q \ = \ $

2

What is the neutral element of addition?

The neutral element of addition is  $N_{\rm A} = \,$ "$0\hspace{0.03cm}0$",
The neutral element of addition is  $N_{\rm A} = \,$ "$0\hspace{0.03cm}1$".

3

What is the neutral element of multiplication?

The neutral element of multiplication is  $N_{\rm M} = \,$ "$0\hspace{0.03cm}0$",
The neutral element of multiplication is  $N_{\rm M} = \,$ "$0\hspace{0.03cm}1$".

4

What statements are true regarding additive inverses?

It holds  ${\rm Inv_A} ($"$0\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}1$",
It holds  ${\rm Inv_A} ($"$1\hspace{0.03cm}1$") $\, = \, $ "$2\hspace{0.03cm}2$",
It holds  ${\rm Inv_A} ($"$2\hspace{0.03cm}2$") $\, = \, $ "$0\hspace{0.03cm}0$".

5

Which of the following statements are true about the multiplication?

The multiplication is defined here modulo  $p(\alpha) = \alpha^2 + 2$.
The multiplication is defined here modulo  $p(\alpha) = \alpha^2 + 2\alpha + 2$.

6

What statements are true regarding multiplicative inverses?

There is a multiplicative inverse for all elements  $z_i ∈ {\rm GF}(P^m)$  .
It holds  ${\rm Inv_M} ($"$1\hspace{0.03cm}2$") $\, = \, $"$1\hspace{0.03cm}0$".
It holds  ${\rm Inv_M} ($"$2\hspace{0.03cm}1$") $\, = \, $ "$1\hspace{0.03cm}2$".

7

Does  $($"$2\hspace{0.03cm}0$" $\, + \,$ "$1\hspace{0.03cm}2$"$)$ $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, = \, $"$2\hspace{0.03cm}0$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" $\, + \, $"$1\hspace{0.03cm}2$" $\, \cdot\, $ "$1\hspace{0.03cm}2$" hold?

Yes.
No.


Solution

(1)  Each element consists of two ternaries   ⇒   $\underline{P = 3}, \ \underline{m = 2}$.  There are  $q = P^m = 3^8 = \underline{9 \rm \hspace{0.2cm}elements}$.


(2)  Correct is the  proposed solution 1:

  • The neutral element of the addition   $(N_{\rm A})$  satisfies for all  $z_i ∈ {\rm GF}(P^m)$  the condition  $z_i + N_{\rm A} = z_i$.
  • From the addition table it can be read that  "$0\hspace{0.03cm}0$"  satisfies this condition.


(3)  Correct is the  proposed solution 2:

  • The neutral element of the multiplication   $(N_{\rm M})$  must always satisfy the condition  $z_i \cdot N_{\rm M} = z_i$.
  • From the multiplication table,  $N_{\rm M} = \, "\hspace{-0.15cm}0\hspace{0.03cm}1\hspace{-0.1cm}"$.
  • In polynomial notation,  this corresponds to  $k_1 = 0$  and  $k_0 = 1$:
$$k_1 \cdot \alpha + k_0 = 1 \hspace{0.05cm}.$$


(4)  With the polynomial representation,  the following calculations result:

$${\rm Inv_A}("\hspace{-0.05cm}0\hspace{0.03cm}2") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2) = (-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = 1 \hspace{0.25cm}\Rightarrow \hspace{0.25cm}{\rm vector}\hspace{0.15cm}"\hspace{-0.1cm}0\hspace{0.03cm}1\hspace{-0.1cm}"\hspace{0.05cm},$$
$${\rm Inv_A}("\hspace{-0.05cm}1\hspace{0.03cm}1")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(\alpha + 1) = \big[(-\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] + \big[(-1) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =2\alpha + 2 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}\hspace{-0.05cm}2\hspace{0.03cm}2\hspace{-0.1cm}"\hspace{0.05cm},$$
$${\rm Inv_A}("\hspace{-0.05cm}2\hspace{0.03cm}2")\hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Inv_A}(2\alpha + 2) = \big[(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] + \big[(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] =\alpha + 1 \hspace{0.25cm} \Rightarrow \hspace{0.25cm}{\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}\hspace{-0.05cm}1\hspace{0.03cm}1\hspace{-0.1cm}"\hspace{0.05cm}.$$

Consequently,  only the  first two proposed solutions  are correct.

However,  the exercise can also be solved without calculation using the addition table alone:

  • For example,  you can find the inverse of  "$2\hspace{0.03cm}2$"  by looking for the column with the entry  "$0\hspace{0.03cm}0$"  in the last row.
  • You find the column labeled  "$1\hspace{0.03cm}1$"  and thus  ${\rm Inv_A}("\hspace{-0.15cm}2\hspace{0.03cm}2\hspace{-0.15cm}") = \, "\hspace{-0.15cm}1\hspace{0.03cm}1\hspace{-0.15cm}"$.


(5)  Multiplying  $\alpha$  $($vector "$1\hspace{0.03cm}0$"$)$  by itself gives  $\alpha^2$.

  • If the first proposed solution were valid,  the condition  $\alpha^2 + 2 = 0$  and thus  $\alpha^2 = (-2) \, {\rm mod} \, 3 = 1$,  thus yielding the vector  "$0\hspace{0.03cm}1$".
  • Assuming the second proposed solution,  it follows from the condition  $\alpha^2 + 2\alpha + 2 = 0$   in polynomial notation:
$$\alpha^2 = \big [(-2\alpha) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big] + \big[(-2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3\big ] = \alpha + 1 $$
and thus the coefficient vector  "$1\hspace{0.03cm}1$".
  • In the multiplication table,  in row 4, column 4,  we find exactly the entry  "$1\hspace{0.03cm}1$"   ⇒   So,  the correct answert is the  proposed solution 2.


(6)  The multiplicative inverse to  "$1\hspace{0.03cm}2$"  can be found in row 6 of the multiplication table as the column with the entry  "$0\hspace{0.03cm}1$"  

  • So the  proposed solution 2  is correct in contrast to proposal 3.  Namely,  ${\rm Inv_M}("\hspace{-0.15cm}21\hspace{-0.15cm}") = \, "\hspace{-0.15cm}2\hspace{0.03cm}0\hspace{-0.1cm}"$ holds.
  • We check these results considering  $\alpha^2 + 2\alpha + 2 = 0$  by multiplications:
$$"\hspace{-0.15cm}1\hspace{0.03cm}2\hspace{-0.1cm}" \hspace{0.05cm}\cdot \hspace{0.05cm}"\hspace{-0.15cm}1\hspace{0.03cm}0\hspace{-0.1cm}" \hspace{0.15cm} \Rightarrow \hspace{0.15cm} (\alpha + 2) \cdot \alpha = \alpha^2 + 2\alpha = (-2\alpha-2) + 2\alpha = -2 \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = 1 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} {\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}0\hspace{0.03cm}1\hspace{-0.15cm}" \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm multiplicative \hspace{0.15cm}inverse}\hspace{0.05cm}.$$
$$"\hspace{-0.15cm}2\hspace{0.03cm}1\hspace{-0.1cm}" \hspace{0.05cm}\cdot \hspace{0.05cm}"\hspace{-0.15cm}1\hspace{0.03cm}2\hspace{-0.1cm}" \hspace{0.15cm} \Rightarrow \hspace{0.15cm} (2\alpha + 1) \cdot (\alpha + 2) = 2 \alpha^2 + \alpha + 4\alpha + 2 = 2 \alpha^2 + 5\alpha + 2 = 2 \cdot (-2\alpha - 2) + 5\alpha + 2 = (\alpha - 2) \hspace{0.1cm}{\rm mod} \hspace{0.1cm} 3 = \alpha +1 $$
$$\hspace{2.725cm} \Rightarrow \ {\rm vector}\hspace{0.15cm}"\hspace{-0.15cm}1\hspace{0.03cm}1\hspace{-0.15cm}" \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm no\hspace{0.15cm}multiplicative \hspace{0.15cm}inverse}\hspace{0.05cm}.$$
  • The solution suggestion 1 is therefore not correct,  because there is no multiplicative inverse for  "$00$".


(7)  The two expressions agree   ⇒   YES, as the following calculations show:

$$("\hspace{-0.15cm}20\hspace{-0.1cm}" + "\hspace{-0.15cm}12\hspace{-0.1cm}") \ \cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}02\hspace{-0.1cm}"\cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}21\hspace{-0.1cm}"\hspace{0.05cm},$$
$$"\hspace{-0.15cm}20\hspace{-0.1cm}" \cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" + "\hspace{-0.15cm}12\hspace{-0.1cm}" \cdot "\hspace{-0.15cm}12\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}02\hspace{-0.1cm}" + "\hspace{-0.15cm}22\hspace{-0.1cm}" \hspace{-0.15cm} \ = \ \hspace{-0.15cm} "\hspace{-0.15cm}21\hspace{-0.1cm}"\hspace{0.05cm}.$$

This means:   The distributive law has been proved at least on a single example.