Difference between revisions of "Aufgaben:Exercise 2.6Z: 4B3T Code according to Jessop and Waters"

From LNTwww
 
Line 70: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1'''&nbsp;  The <u>second solution</u> is correct. The first ternary sequence would result with ${\it \Sigma}_{0} = 2$, the last with ${\it \Sigma}_{0} = 5$.
+
'''1'''&nbsp;  The&nbsp; <u>second solution</u>&nbsp; is correct.&nbsp;
 +
*The first ternary sequence would result with&nbsp; ${\it \Sigma}_{0} = 2$,&nbsp;
 +
*the last with&nbsp; ${\it \Sigma}_{0} = 5$.
  
  
'''2'''&nbsp; Starting from ${\it \Sigma}_{0} = 0$, the following values result for the running digital sum:<br><br>
+
'''2'''&nbsp; Starting from&nbsp; ${\it \Sigma}_{0} = 0$,&nbsp; the following values result for the running digital sum:<br><br>
 
&nbsp; &nbsp; ${\it \Sigma}_{1} = 0,$ &nbsp; &nbsp; ${\it \Sigma}_{2} = 1,$ &nbsp; &nbsp; ${\it \Sigma}_{3} = 4,$ &nbsp; &nbsp; ${\it \Sigma}_{4}= 3,$ &nbsp; &nbsp; ${\it \Sigma}_{5} = 2,$ &nbsp; &nbsp; ${\it \Sigma}_{6} \ \underline{= 3}.$
 
&nbsp; &nbsp; ${\it \Sigma}_{1} = 0,$ &nbsp; &nbsp; ${\it \Sigma}_{2} = 1,$ &nbsp; &nbsp; ${\it \Sigma}_{3} = 4,$ &nbsp; &nbsp; ${\it \Sigma}_{4}= 3,$ &nbsp; &nbsp; ${\it \Sigma}_{5} = 2,$ &nbsp; &nbsp; ${\it \Sigma}_{6} \ \underline{= 3}.$
  
  
'''3'''&nbsp; $K_{+1}\underline{ = 6}$ holds. &nbsp; Also in the coded sequence of this exercise, one recognizes six consecutive plus signs coming from a total of three blocks:
+
'''3'''&nbsp; $K_{+1}\hspace{0.15cm}\underline{ = 6}$ holds. &nbsp; Also in the coded sequence of this exercise,  
 +
:$$ \text{0 – +}  \hspace{0.4cm}    \text{– + +}  \hspace{0.4cm}    \text{+ + +}  \hspace{0.4cm}    \text{+ – –}    \hspace{0.5cm}  \text{– 0 0}  \hspace{0.4cm}  \text{0 0 +} \hspace{0.1cm},$$
 +
one recognizes six consecutive plus signs coming from a total of three blocks:
 
*Two at the end of the second block,
 
*Two at the end of the second block,
*then three "$+1$" in block $3$ and
+
*then three&nbsp; "$+1$"&nbsp; in block&nbsp; $3$,&nbsp; and
*finally one "$+1$" at the beginning of the fourth block.
+
*finally one&nbsp; "$+1$"&nbsp; at the beginning of the fourth block.
  
  
Similarly, $K_{-1} = 6$ (see solution suggestion 3 in the first subtask).
+
Similarly,&nbsp; $K_{-1} = 6$&nbsp; (see solution suggestion 3 in the first subtask).
  
  
'''4'''&nbsp; If ${\it \Sigma}_{l} = 2$, the binary sequence $\rm HLHH\hspace{0.1cm} HHLH$ leads to the ternary sequence $+ 0 0 \hspace{0.1cm}0 0 –$. More than $K_{0}\ \underline{ = 4}$ consecutive zeros are not possible.
+
'''4'''&nbsp; If&nbsp; ${\it \Sigma}_{l} = 2$,&nbsp; the binary sequence&nbsp; "$\rm HLHH\hspace{0.1cm} HHLH$"&nbsp; leads to the ternary sequence&nbsp; "$+ 0 0 \hspace{0.1cm}0 0 –$".  
 +
*More than&nbsp; $K_{0}\ \underline{ = 4}$&nbsp; consecutive zeros are not possible.
  
  
'''5'''&nbsp; The ternary sequence here is: &nbsp; $ \text{0 – +}  \hspace{0.4cm}    \text{+ – –}  \hspace{0.5cm}    \text{– – –}  \hspace{0.65cm}    \text{– + +}    \hspace{0.4cm}  \text{+ 0 0}  \hspace{0.4cm}  \text{0 0 –}\hspace{0.1cm}. $.  
+
'''5'''&nbsp; The ternary sequence here is: &nbsp; "$ \text{0 – +}  \hspace{0.4cm}    \text{+ – –}  \hspace{0.5cm}    \text{– – –}  \hspace{0.65cm}    \text{– + +}    \hspace{0.4cm}  \text{+ 0 0}  \hspace{0.4cm}  \text{0 0 –} $".  
*The running digital sum builds up as follows:<br><br>
+
*The running digital sum builds up as follows: &nbsp; ${\it \Sigma}_{1} = 5,$ &nbsp; &nbsp; ${\it \Sigma}_{2} = 4,$ &nbsp; &nbsp; ${\it \Sigma}_{3} = 1,$ &nbsp; &nbsp; ${\it \Sigma}_{4}= 2,$ &nbsp; &nbsp; ${\it \Sigma}_{5} = 3,$ &nbsp; &nbsp; ${\it \Sigma}_{6} \ \underline{= 2}.$
&nbsp; &nbsp; ${\it \Sigma}_{1} = 5,$ &nbsp; &nbsp; ${\it \Sigma}_{2} = 4,$ &nbsp; &nbsp; ${\it \Sigma}_{3} = 1,$ &nbsp; &nbsp; ${\it \Sigma}_{4}= 2,$ &nbsp; &nbsp; ${\it \Sigma}_{5} = 3,$ &nbsp; &nbsp; ${\it \Sigma}_{6} \ \underline{= 2}.$
 
  
  

Latest revision as of 17:24, 19 May 2022


Code tables for the 4B3T code according to Jessop/Waters

The graphic shows the two code tables for the 4B3T code according to Jessop and Waters. 

Depending on the current value of the running digital sum

$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}$$

there are for each binary input tuple  $\rm LLLL$ ... $\rm \ HHHH$  two different ternary code sequences.

  • In the table,  "$+$"  and  "$-$"  stand for the amplitude coefficients  $a_{\nu} = +1$  and  $a_{\nu} = -1$.
  • The index  $l$  identifies the individual blocks.
  • In the exercise,  the following six input blocks are assumed:
$$\rm LLHL\hspace{0.1cm} HLLH \hspace{0.1cm}LHHH \hspace{0.1cm}HLLH \hspace{0.1cm}HLHH \hspace{0.1cm}HHLH.$$
  • The running digital sum is initialized to  ${\it \Sigma}_{0} = 0$  in subtasks up to and including (2) or to  ${\it \Sigma}_{0} = 5$  in subtask (5).




Notes:

  • The binary symbols are denoted by  $\rm L$  ("Low")  and  $\rm H$  ("High")  in this learning tutorial.  Often you can find the binary symbols  $\rm L$  and  $\rm 0$  $($instead of  $\rm H)$  in the literature.  Sometimes,  however,  $\rm L$  corresponds to our  $\rm H$  and  $\rm 0$  to   $\rm L$.
  • To avoid such confusion and to prevent the  $\rm 0$  from appearing in both alphabets  (binary and ternary)  - in addition with different meanings - we have used the nomenclature which admittedly takes some getting used to.  We are well aware that our nomenclature will also confuse some readers.


Questions

1

Code the input sequence   $\rm LLHL\hspace{0.1cm} HLLH \hspace{0.1cm}LHHH \hspace{0.1cm}HLLH \hspace{0.1cm}HLHH \hspace{0.1cm}HHLH$   starting from the initial value  ${\it \Sigma}_{0} = 0$.
What is the ternary output sequence?

$ \text{0 – +} \hspace{0.4cm} \text{– + +} \hspace{0.5cm} \text {– – –} \hspace{0.65cm} \text{– ++} \hspace{0.4cm} \text{+ 0 0} \hspace{0.4cm} \text{0 0 +}\hspace{0.1cm}, $
$ \text{0 – +} \hspace{0.4cm} \text{– + +} \hspace{0.4cm} \text{+ + +} \hspace{0.4cm} \text{+ – –} \hspace{0.5cm} \text{– 0 0} \hspace{0.4cm} \text{0 0 +} \hspace{0.1cm},$
$ \text{0 – +} \hspace{0.4cm} \text{+ – –} \hspace{0.5cm} \text{– – –} \hspace{0.65cm} \text{– + +} \hspace{0.4cm} \text{+ 0 0} \hspace{0.4cm} \text{0 0 –}\hspace{0.1cm}. $

2

What is the value of the running digital sum after coding the six blocks?

${\it \Sigma}_{6} \ = \ $

3

What is the maximum number of ternary values  $+1$  that can succeed each other?

$K_{+1} \ = \ $

4

What is the maximum number of ternary values  $0$  that can succeed each other?

$K_{0} \ = \ $

5

What is the value of the running digital sum after coding the six blocks,  assuming  ${\it \Sigma}_{0} = 5$? 

${\it \Sigma}_{6} \ = \ $


Solution

1  The  second solution  is correct. 

  • The first ternary sequence would result with  ${\it \Sigma}_{0} = 2$, 
  • the last with  ${\it \Sigma}_{0} = 5$.


2  Starting from  ${\it \Sigma}_{0} = 0$,  the following values result for the running digital sum:

    ${\it \Sigma}_{1} = 0,$     ${\it \Sigma}_{2} = 1,$     ${\it \Sigma}_{3} = 4,$     ${\it \Sigma}_{4}= 3,$     ${\it \Sigma}_{5} = 2,$     ${\it \Sigma}_{6} \ \underline{= 3}.$


3  $K_{+1}\hspace{0.15cm}\underline{ = 6}$ holds.   Also in the coded sequence of this exercise,

$$ \text{0 – +} \hspace{0.4cm} \text{– + +} \hspace{0.4cm} \text{+ + +} \hspace{0.4cm} \text{+ – –} \hspace{0.5cm} \text{– 0 0} \hspace{0.4cm} \text{0 0 +} \hspace{0.1cm},$$

one recognizes six consecutive plus signs coming from a total of three blocks:

  • Two at the end of the second block,
  • then three  "$+1$"  in block  $3$,  and
  • finally one  "$+1$"  at the beginning of the fourth block.


Similarly,  $K_{-1} = 6$  (see solution suggestion 3 in the first subtask).


4  If  ${\it \Sigma}_{l} = 2$,  the binary sequence  "$\rm HLHH\hspace{0.1cm} HHLH$"  leads to the ternary sequence  "$+ 0 0 \hspace{0.1cm}0 0 –$".

  • More than  $K_{0}\ \underline{ = 4}$  consecutive zeros are not possible.


5  The ternary sequence here is:   "$ \text{0 – +} \hspace{0.4cm} \text{+ – –} \hspace{0.5cm} \text{– – –} \hspace{0.65cm} \text{– + +} \hspace{0.4cm} \text{+ 0 0} \hspace{0.4cm} \text{0 0 –} $".

  • The running digital sum builds up as follows:   ${\it \Sigma}_{1} = 5,$     ${\it \Sigma}_{2} = 4,$     ${\it \Sigma}_{3} = 1,$     ${\it \Sigma}_{4}= 2,$     ${\it \Sigma}_{5} = 3,$     ${\it \Sigma}_{6} \ \underline{= 2}.$