Difference between revisions of "Aufgaben:Exercise 2.7Z: Power-Spectral Density of Pseudo-Ternary Codes"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Symbolweise Codierung mit Pseudoternärcodes
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes
 
}}
 
}}
  
  
[[File:P_ID1354__Dig_Z_2_7.png|right|frame|Leistungsdichtespektren von drei verschiedenen Pseudoternärcodes]]
+
[[File:P_ID1354__Dig_Z_2_7.png|right|frame|Power-spectral densities of three different pseudo ternary codes]]
In der Grafik sehen Sie die Leistungsdichtespektren von drei verschiedenen Pseudoternärcodes, die sich aus der allgemeinen Beschreibung gemäß der   [[Aufgaben:2.7_AMI-Code|Aufgabe 2.7]]  durch unterschiedliche Werte der Parameter  $N_{\rm C}$  und  $K_{\rm C}$  ergeben. In verschiedenen Farben sind die Leistungsdichtespektren
+
In the graph you can see the power-spectral densities of three different pseudo ternary codes, which result from the general description according to  [[Aufgaben:2.7_AMI-Code|Aufgabe 2.7]]  by different values of the parameters  $N_{\rm C}$  and  $K_{\rm C}$.  In different colors the power-spectral densities
 
:$${\it \Phi}_s(f) 0 \ \frac{s_0^2 \cdot T}{2} \cdot {\rm si}^2 (\pi f T)  \cdot  \big [1 - K_{\rm C} \cdot \cos (2\pi f N_{\rm C} T)\big ]$$
 
:$${\it \Phi}_s(f) 0 \ \frac{s_0^2 \cdot T}{2} \cdot {\rm si}^2 (\pi f T)  \cdot  \big [1 - K_{\rm C} \cdot \cos (2\pi f N_{\rm C} T)\big ]$$
für folgende Varianten dargestellt:
+
are shown for the following variants:
*AMI–Code  $(N_{\rm C} = 1, K_{\rm C} = +1)$,
+
*AMI code  $(N_{\rm C} = 1, K_{\rm C} = +1)$,
*Duobinärcode  $(N_{\rm C} = 1, K_{\rm C} = -1)$,
+
*duobinary code  $(N_{\rm C} = 1, K_{\rm C} = -1)$,
*Bipolarcode zweiter Ordnung $ (N_{\rm C} = 2, K_{\rm C} = +1)$.
+
*second order bipolar code $ (N_{\rm C} = 2, K_{\rm C} = +1)$.
  
  
Bei obiger LDS–Gleichung ist die Verwendung von rechteckförmigen NRZ–Sendegrundimpulsen vorausgesetzt.  
+
The above PSD equation assumes the use of rectangular NRZ basic transmission pulses.
  
Alle hier betrachteten Pseudoternärcodes besitzen die gleiche Wahrscheinlichkeitsverteilung:
+
All pseudo ternary codes considered here have the same probability distribution:
 
:$${\rm Pr}\big[s(t) = 0\big]= {1}/{2},\hspace{0.2cm}{\rm Pr}\big[s(t) = +s_0\big]= {\rm Pr}\big[s(t) = -s_0\big]={1}/{4}\hspace{0.05cm}.$$
 
:$${\rm Pr}\big[s(t) = 0\big]= {1}/{2},\hspace{0.2cm}{\rm Pr}\big[s(t) = +s_0\big]= {\rm Pr}\big[s(t) = -s_0\big]={1}/{4}\hspace{0.05cm}.$$
  
Line 23: Line 23:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Symbolweise_Codierung_mit_Pseudoternärcodes|Symbolweise Codierung mit Pseudoternärcodes]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes|Symbol-Wise Coding with Pseudo Ternary Codes]].
 
   
 
   
*Sie können die Ergebnisse mit dem interaktiven Applet  [[Applets:Pseudoternaercodierung|Signale, AKF und LDS der Pseudoternärcodes]]  überprüfen.
+
*You can check the results with the interactive applet  [[Applets:Pseudoternaercodierung|Signals, ACF and PSD of pseudo ternary codes]].   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welcher Kurvenzug gehört zum '''AMI–Code'''?
+
{Which curve belongs to the '''AMI code'''?
 
|type="[]"}
 
|type="[]"}
+ rot,
+
+ red,
- blau,
+
- blue,
- grün.
+
- green.
  
{Welcher Kurvenzug gehört zum '''Duobinärcode'''?
+
{Which curve belongs to the '''duobinary code'''?
 
|type="[]"}
 
|type="[]"}
- rot,
+
- red,
+ blau,
+
+ blue,
- grün.
+
- green.
  
{Welcher Kurvenzug gehört zum '''Bipolarcode zweiter Ordnung'''?
+
{Which curve belongs to the '''second order bipolar code'''?
 
|type="[]"}
 
|type="[]"}
- rot,
+
- red,
- blau,
+
- blue,
+ grün.
+
+ green.
  
{Welcher Code besitzt die größte Sendeleistung?
+
{Which code has the highest transmit power?
 
|type="[]"}
 
|type="[]"}
- AMI–Code,
+
- AMI code,
- Duobinärcode,
+
- duobinary code,
- Bipolarcode 2. Ordnung.
+
- 2nd order bipolar code.
+ Die Sendeleistung ist bei allen Codes gleich.
+
+ The transmit power is the same for all codes.
  
{Welcher dieser Codes ist gleichsignalfrei?
+
{Which of these codes is equal-signal-free?
 
|type="[]"}
 
|type="[]"}
+ AMI–Code,
+
+ AMI code,
- Duobinärcode,
+
- duobinary code,
+ Bipolarcode 2. Ordnung.
+
+ 2nd order bipolar code.
  
{Warum benötigt man beim „Telefonkanal” gleichsignalfreie Codes?
+
{Why do you need codes without equal signals for the "telephone channel"?
 
|type="[]"}
 
|type="[]"}
+ Zur Verbindung von Leitungen unterschiedlicher Impedanz braucht man Übertrager. Diese haben Hochpasscharakter.
+
+ Transformers are needed to connect lines of different impedance. These have high-pass character.
+ Da die Stromversorgung oft über die Signalleitung erfolgt, darf das Nachrichtensignal keinen Gleichsignalanteil beinhalten.
+
+ Since power is often supplied via the signal line, the message signal must not contain any DC signal components.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Beim AMI–Code kann das LDS wie folgt umgeformt werden:
+
'''(1)'''&nbsp;  In AMI code, the PSD can be transformed as follows:
 
:$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \sin^2 (\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$
 
:$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \sin^2 (\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$
Dieser Kurvenverlauf ist <u>rot</u> dargestellt. Das LDS der Amplitudenkoeffizienten ist ${\it \Phi}_{a}(f) = \sin^2(\pi fT)$.
+
This curve shape is shown in <u>red</u>. The PSD of the amplitude coefficients is ${\it \Phi}_{a}(f) = \sin^2(\pi fT)$.
  
  
'''(2)'''&nbsp; Nach Umformung erhält man für den Duobinärcode:
+
'''(2)'''&nbsp; After reshaping, we obtain for the duobinary code:
 
:$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \cos^2 (\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$
 
:$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \cos^2 (\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$
In der Grafik ist der Duobinärcode <u>blau</u> gezeichnet. Weiterhin gilt ${\it \Phi}_{a}(f) = \cos^2(\pi fT)$.
+
In the graph, the duobinary code is drawn in <u>blue</u>. Furthermore, ${\it \Phi}_{a}(f) = \cos^2(\pi fT)$.
  
  
'''(3)'''&nbsp; Der Bipolarcode zweiter Ordnung unterscheidet sich vom AMI–Code nur durch den Faktor $2$ im Argument der $\sin^{2}$–Funktion:
+
'''(3)'''&nbsp; The second order bipolar code differs from the AMI code only by the factor $2$ in the argument of the $\sin^{2}$ function:
 
:$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \sin^2 (2\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$
 
:$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \sin^2 (2\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$
Der <u>grüne</u> Kurvenzug stellt diesen Funktionsverlauf dar. Gegenüber dem AMI-Code ist ${\it \Phi}_{a}(f)$ genau halb so breit.
+
The <u>green</u> curve represents this function progression. Compared to AMI code, ${\it \Phi}_{a}(f)$ is exactly half as wide.
  
  
'''(4)'''&nbsp; Die Sendeleistung $P_{\rm S}$ ist gleich dem Integral über das Leistungsdichtespektrum ${\it \Phi}_{s}(f)$ und ist für alle hier betrachteten Codes gleich  &nbsp; &rArr; &nbsp;  <u>Lösungsvorschlag 4</u>.  
+
'''(4)'''&nbsp; The transmit power  $P_{\rm S}$ is equal to the integral over the power-spectral density ${\it \Phi}_{s}(f)$ and is the same for all codes considered here &nbsp; &rArr; &nbsp;  <u>solution 4</u>.  
*Dies folgt auch aus der Leistungsberechnung durch Scharmittelung:
+
*This also follows from the power calculation by coulter averaging:
 
:$$P_{\rm S} = \ {\rm Pr}[s(t) = +s_0] \cdot (+s_0)^2 + {\rm Pr}[s(t) = -s_0] \cdot (-s_0)^2= {1}/{4}\cdot s_0^2 + {1}/{4}\cdot s_0^2 = {1}/{2}\cdot s_0^2\hspace{0.05cm}.$$
 
:$$P_{\rm S} = \ {\rm Pr}[s(t) = +s_0] \cdot (+s_0)^2 + {\rm Pr}[s(t) = -s_0] \cdot (-s_0)^2= {1}/{4}\cdot s_0^2 + {1}/{4}\cdot s_0^2 = {1}/{2}\cdot s_0^2\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp;  Richtig sind die  <u>Lösungsvorschläge 1 und 3</u>:  
+
'''(5)'''&nbsp;  <u>Solutions 1 and 3</u> are correct:  
*Gleichsignalfreiheit liegt vor, wenn das Leistungsdichtespektrum bei der Frequenz $f = 0$ keinen Anteil aufweist.  
+
*Equal signal freedom exists if the power-spectral density has no component at frequency $f = 0$.
*Dies gilt für den AMI–Code und den Bipolarcode zweiter Ordnung.
+
*This is true for the AMI code and the second order bipolar code.
*Diese Aussage bedeutet nicht nur, dass $s(t)$ keinen Gleichanteil besitzt, also dass ${\it \Phi}_{s}(f)$ keine Diracfunktion bei $f = 0$ besitzt.  
+
*This statement does not only mean that $s(t)$ has no DC component, i.e. that ${\it \Phi}_{s}(f)$ has no Dirac delta function at $f = 0$.  
*Es bedeutet darüber hinaus auch, dass der kontinuierliche LDS–Anteil bei $f = 0$ verschwindet.  
+
*Moreover, it also means that the continuous PSD component vanishes at $f = 0$.  
*Dies wird genau dann erreicht, wenn sowohl die lange „$+1$”– als auch die lange „$–1$”–Folge durch die Codiervorschrift ausgeschlossen werden.
+
*This is achieved exactly when both the long "$+1$" and the long "$–1$" sequences are excluded by the coding rule.
  
  
'''(6)'''&nbsp; <u>Beide vorgegebenen Lösungsvorschläge</u> treffen in der Praxis zu.
+
'''(6)'''&nbsp; <u>Both solutions</u> apply in practice.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 21:31, 22 April 2022


Power-spectral densities of three different pseudo ternary codes

In the graph you can see the power-spectral densities of three different pseudo ternary codes, which result from the general description according to  Aufgabe 2.7  by different values of the parameters  $N_{\rm C}$  and  $K_{\rm C}$.  In different colors the power-spectral densities

$${\it \Phi}_s(f) 0 \ \frac{s_0^2 \cdot T}{2} \cdot {\rm si}^2 (\pi f T) \cdot \big [1 - K_{\rm C} \cdot \cos (2\pi f N_{\rm C} T)\big ]$$

are shown for the following variants:

  • AMI code  $(N_{\rm C} = 1, K_{\rm C} = +1)$,
  • duobinary code  $(N_{\rm C} = 1, K_{\rm C} = -1)$,
  • second order bipolar code $ (N_{\rm C} = 2, K_{\rm C} = +1)$.


The above PSD equation assumes the use of rectangular NRZ basic transmission pulses.

All pseudo ternary codes considered here have the same probability distribution:

$${\rm Pr}\big[s(t) = 0\big]= {1}/{2},\hspace{0.2cm}{\rm Pr}\big[s(t) = +s_0\big]= {\rm Pr}\big[s(t) = -s_0\big]={1}/{4}\hspace{0.05cm}.$$




Notes:


Questions

1

Which curve belongs to the AMI code?

red,
blue,
green.

2

Which curve belongs to the duobinary code?

red,
blue,
green.

3

Which curve belongs to the second order bipolar code?

red,
blue,
green.

4

Which code has the highest transmit power?

AMI code,
duobinary code,
2nd order bipolar code.
The transmit power is the same for all codes.

5

Which of these codes is equal-signal-free?

AMI code,
duobinary code,
2nd order bipolar code.

6

Why do you need codes without equal signals for the "telephone channel"?

Transformers are needed to connect lines of different impedance. These have high-pass character.
Since power is often supplied via the signal line, the message signal must not contain any DC signal components.


Solution

(1)  In AMI code, the PSD can be transformed as follows:

$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \sin^2 (\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$

This curve shape is shown in red. The PSD of the amplitude coefficients is ${\it \Phi}_{a}(f) = \sin^2(\pi fT)$.


(2)  After reshaping, we obtain for the duobinary code:

$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \cos^2 (\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$

In the graph, the duobinary code is drawn in blue. Furthermore, ${\it \Phi}_{a}(f) = \cos^2(\pi fT)$.


(3)  The second order bipolar code differs from the AMI code only by the factor $2$ in the argument of the $\sin^{2}$ function:

$${\it \Phi}_s(f) = {s_0^2 \cdot T} \cdot \sin^2 (2\pi f T) \cdot {\rm si}^2 (\pi f T) \hspace{0.05cm}.$$

The green curve represents this function progression. Compared to AMI code, ${\it \Phi}_{a}(f)$ is exactly half as wide.


(4)  The transmit power $P_{\rm S}$ is equal to the integral over the power-spectral density ${\it \Phi}_{s}(f)$ and is the same for all codes considered here   ⇒   solution 4.

  • This also follows from the power calculation by coulter averaging:
$$P_{\rm S} = \ {\rm Pr}[s(t) = +s_0] \cdot (+s_0)^2 + {\rm Pr}[s(t) = -s_0] \cdot (-s_0)^2= {1}/{4}\cdot s_0^2 + {1}/{4}\cdot s_0^2 = {1}/{2}\cdot s_0^2\hspace{0.05cm}.$$


(5)  Solutions 1 and 3 are correct:

  • Equal signal freedom exists if the power-spectral density has no component at frequency $f = 0$.
  • This is true for the AMI code and the second order bipolar code.
  • This statement does not only mean that $s(t)$ has no DC component, i.e. that ${\it \Phi}_{s}(f)$ has no Dirac delta function at $f = 0$.
  • Moreover, it also means that the continuous PSD component vanishes at $f = 0$.
  • This is achieved exactly when both the long "$+1$" and the long "$–1$" sequences are excluded by the coding rule.


(6)  Both solutions apply in practice.