Difference between revisions of "Aufgaben:Exercise 2.8: Code Comparison: Binary, AMI and 4B3T"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Symbolweise Codierung mit Pseudoternärcodes }} [[File:|right|]] ===Fragebogen=== <quiz display=simple…“)
 
 
(25 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Symbolweise Codierung mit Pseudoternärcodes
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes
 
}}
 
}}
  
  
[[File:|right|]]
+
[[File:EN_Dig_A_2_8.png|right|frame|Eye diagrams of different codes]]
 +
In the graphic three eye diagrams&nbsp; (without noise)&nbsp; are shown,&nbsp; where in each case a rectangular NRZ basic transmission pulse and for the total system frequency response&nbsp; (of transmitter, channel and decoder,&nbsp; without encoder)&nbsp; a cosine rolloff characteristic with rolloff factor &nbsp;$r = 0.8$&nbsp; are the basis.
  
 +
For the individual eye diagrams it is furthermore assumed&nbsp; (from top to bottom):
 +
*the redundancy-free binary code,
 +
*the AMI code (approx. &nbsp;$37 \%$&nbsp; redundancy),
 +
*the 4B3T code (approx. &nbsp;$16&nbsp; \%$ redundancy).
  
===Fragebogen===
+
 
 +
Further,&nbsp; the following conditions can be assumed:
 +
*AWGN noise is present,&nbsp; where holds:
 +
:$$10 \cdot {\rm lg}\hspace{0.1cm} ({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB}\hspace{0.05cm}.$$
 +
*The detection noise power has the following value for the binary system&nbsp; (due to the non-optimal receiver filter &nbsp;$12 \%$ markup):
 +
:$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 T})\hspace{0.05cm}.$$
 +
*The symbol error probability of the binary system is:
 +
:$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right) \hspace{0.05cm}.$$
 +
*In contrast,&nbsp; for the two redundant pseudo-ternary systems:
 +
:$$p_{\rm S} = {4}/{3} \cdot {\rm Q} \left( s_0/(2 \sigma_d) \right) \hspace{0.05cm}.$$
 +
*It should be taken into account that the noise rms value &nbsp;$\sigma_{d}$&nbsp; may well change with respect to the redundancy-free binary system.
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter &nbsp;  [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"Symbolwise Coding with Pseudo-Ternary Codes"]].
 +
 
 +
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Blockweise_Codierung_mit_4B3T-Codes|"Block Coding with 4B3T Codes"]].
 +
 +
*For numerical evaluation of the Q-function you can use the HTML5/JavaScript applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].&nbsp;
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
|type="[]"}
+
{Calculate the&nbsp; (normalized)&nbsp; noise root mean square for the&nbsp; '''binary system'''.
- Falsch
+
|type="{}"}
+ Richtig
+
$\sigma_{d}/s_{0} \ = \ $ { 0.237 3% }
 +
 
 +
 
 +
{What is the error probability of the binary system?
 +
|type="{}"}
 +
$\ p_{\rm S} \ = \ $ { 1.22 3% } $\ \cdot 10^{-5}$
 +
 
 +
 
 +
{What is the noise rms value for the system with&nbsp; '''AMI coding'''?
 +
|type="{}"}
 +
$\sigma_{d}/s_{0} \ = \ $ { 0.237 3% }
  
  
{Input-Box Frage
+
{What is the error probability with AMI coding?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\ p_{\rm S} \ = \ $ { 2.32 3% } $\ \%$
 +
 
  
 +
{What is the noise rms value when using the&nbsp; '''4B3T code'''?
 +
|type="{}"}
 +
$\sigma_{d}/s_{0} \ = \ $ { 0.205 3% }
  
 +
{What is the error probability of the 4B3T code?
 +
|type="{}"}
 +
$\ p_{\rm S} \ = \ $ { 1.11 3% } $\ \%$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; From the given S/N ratio,&nbsp; we obtain:
'''(2)'''&nbsp;
+
:$$10 \cdot {\rm lg}\hspace{0.1cm}({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{N_0} = { s_0^2 \cdot T}/{10}$$
'''(3)'''&nbsp;
+
:$$ \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma_d^2 = 1.12 \cdot {N_0}/({2 T}) = 0.056 \cdot s_0^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{ \sigma_d}/{s_0} \hspace{0.15cm}\underline { = 0.237}\hspace{0.05cm}.$$
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
'''(2)'''&nbsp; From this,&nbsp; it follows for the symbol error probability of the binary redundancy-free reference system:
 +
:$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right)\approx {\rm Q}(4.22)\hspace{0.15cm}\underline { = 1.22 \cdot 10^{-5}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; The symbol duration&nbsp; $T$&nbsp; of the AMI encoded signal is equal to the bit duration&nbsp; $T_{\rm B}$&nbsp; of the binary signal.
 +
*Therefore,&nbsp; the bandwidth ratios do not change and the same noise rms value is obtained as calculated in point&nbsp; '''(1)''':
 +
:$${ \sigma_d}/{s_0}\hspace{0.15cm}\underline { = 0.237} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Due to the ternary decision,&nbsp; the argument of the Q-function is halved:
 +
:$$p_{\rm S} \approx{4}/{3}\cdot {\rm Q}(2.11)={4}/{3} \cdot 1.74 \cdot 10^{-2}\hspace{0.15cm}\underline { = 2.32 \cdot 10^{-2}} \hspace{0.05cm}.$$
 +
*Here,&nbsp; the factor&nbsp; $4/3$&nbsp; takes into account that the inner symbol&nbsp; $0$&nbsp; can be falsified in two directions.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; When 4B3T coding is applied,&nbsp; the symbol rate is reduced by&nbsp; $25 \%$.
 +
*By the same factor&nbsp; $0.75$,&nbsp; this makes the noise power smaller than calculated in&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)'''.&nbsp; From this follows:
 +
:$${ \sigma_d}/{s_0} = \sqrt{0.75} \cdot 0.237 \hspace{0.15cm}\underline {\approx 0.205} \hspace{0.05cm}.$$
 +
 
  
 +
'''(6)'''&nbsp; Due to the smaller noise rms value,&nbsp; the error probability is now smaller than with the AMI code:
 +
:$$p_{\rm S} \approx {4}/{3} \cdot {\rm Q} \left( \frac{0.5}{ 0.205} \right) = {4}/{3} \cdot 0.833 \cdot 10^{-2}\hspace{0.15cm}\underline { = 1.11 \cdot 10^{-2}} \hspace{0.05cm}.$$
 +
*But the 4B3T code cannot achieve the significantly smaller error probability of the redundancy-free binary code due to the ternary decision&nbsp; (half eye opening).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.4 Pseudoternärcodes^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.4 Pseudo-Ternary Codes^]]

Latest revision as of 17:43, 25 May 2022


Eye diagrams of different codes

In the graphic three eye diagrams  (without noise)  are shown,  where in each case a rectangular NRZ basic transmission pulse and for the total system frequency response  (of transmitter, channel and decoder,  without encoder)  a cosine rolloff characteristic with rolloff factor  $r = 0.8$  are the basis.

For the individual eye diagrams it is furthermore assumed  (from top to bottom):

  • the redundancy-free binary code,
  • the AMI code (approx.  $37 \%$  redundancy),
  • the 4B3T code (approx.  $16  \%$ redundancy).


Further,  the following conditions can be assumed:

  • AWGN noise is present,  where holds:
$$10 \cdot {\rm lg}\hspace{0.1cm} ({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB}\hspace{0.05cm}.$$
  • The detection noise power has the following value for the binary system  (due to the non-optimal receiver filter  $12 \%$ markup):
$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 T})\hspace{0.05cm}.$$
  • The symbol error probability of the binary system is:
$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right) \hspace{0.05cm}.$$
  • In contrast,  for the two redundant pseudo-ternary systems:
$$p_{\rm S} = {4}/{3} \cdot {\rm Q} \left( s_0/(2 \sigma_d) \right) \hspace{0.05cm}.$$
  • It should be taken into account that the noise rms value  $\sigma_{d}$  may well change with respect to the redundancy-free binary system.



Notes:


Questions

1

Calculate the  (normalized)  noise root mean square for the  binary system.

$\sigma_{d}/s_{0} \ = \ $

2

What is the error probability of the binary system?

$\ p_{\rm S} \ = \ $

$\ \cdot 10^{-5}$

3

What is the noise rms value for the system with  AMI coding?

$\sigma_{d}/s_{0} \ = \ $

4

What is the error probability with AMI coding?

$\ p_{\rm S} \ = \ $

$\ \%$

5

What is the noise rms value when using the  4B3T code?

$\sigma_{d}/s_{0} \ = \ $

6

What is the error probability of the 4B3T code?

$\ p_{\rm S} \ = \ $

$\ \%$


Solution

(1)  From the given S/N ratio,  we obtain:

$$10 \cdot {\rm lg}\hspace{0.1cm}({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{N_0} = { s_0^2 \cdot T}/{10}$$
$$ \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma_d^2 = 1.12 \cdot {N_0}/({2 T}) = 0.056 \cdot s_0^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{ \sigma_d}/{s_0} \hspace{0.15cm}\underline { = 0.237}\hspace{0.05cm}.$$


(2)  From this,  it follows for the symbol error probability of the binary redundancy-free reference system:

$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right)\approx {\rm Q}(4.22)\hspace{0.15cm}\underline { = 1.22 \cdot 10^{-5}} \hspace{0.05cm}.$$


(3)  The symbol duration  $T$  of the AMI encoded signal is equal to the bit duration  $T_{\rm B}$  of the binary signal.

  • Therefore,  the bandwidth ratios do not change and the same noise rms value is obtained as calculated in point  (1):
$${ \sigma_d}/{s_0}\hspace{0.15cm}\underline { = 0.237} \hspace{0.05cm}.$$


(4)  Due to the ternary decision,  the argument of the Q-function is halved:

$$p_{\rm S} \approx{4}/{3}\cdot {\rm Q}(2.11)={4}/{3} \cdot 1.74 \cdot 10^{-2}\hspace{0.15cm}\underline { = 2.32 \cdot 10^{-2}} \hspace{0.05cm}.$$
  • Here,  the factor  $4/3$  takes into account that the inner symbol  $0$  can be falsified in two directions.


(5)  When 4B3T coding is applied,  the symbol rate is reduced by  $25 \%$.

  • By the same factor  $0.75$,  this makes the noise power smaller than calculated in  (1)  and  (3).  From this follows:
$${ \sigma_d}/{s_0} = \sqrt{0.75} \cdot 0.237 \hspace{0.15cm}\underline {\approx 0.205} \hspace{0.05cm}.$$


(6)  Due to the smaller noise rms value,  the error probability is now smaller than with the AMI code:

$$p_{\rm S} \approx {4}/{3} \cdot {\rm Q} \left( \frac{0.5}{ 0.205} \right) = {4}/{3} \cdot 0.833 \cdot 10^{-2}\hspace{0.15cm}\underline { = 1.11 \cdot 10^{-2}} \hspace{0.05cm}.$$
  • But the 4B3T code cannot achieve the significantly smaller error probability of the redundancy-free binary code due to the ternary decision  (half eye opening).