Difference between revisions of "Aufgaben:Exercise 2.8: Code Comparison: Binary, AMI and 4B3T"

From LNTwww
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes
 
}}
 
}}
  
  
[[File:P_ID1355__Dig_A_2_8.png|right|frame|Eye diagrams of different codes]]
+
[[File:EN_Dig_A_2_8.png|right|frame|Eye diagrams of different codes]]
In the diagram three eye diagrams (without noise) are shown, where in each case a rectangular NRZ basic transmission pulse and for the total system a cosine rolloff characteristic with rolloff factor  $r = 0.8$  are the basis. For the individual eye diagrams it is furthermore assumed (from top to bottom):
+
In the graphic three eye diagrams  (without noise)  are shown,  where in each case a rectangular NRZ basic transmission pulse and for the total system frequency response  (of transmitter, channel and decoder,  without encoder)  a cosine rolloff characteristic with rolloff factor  $r = 0.8$  are the basis.  
 +
 
 +
For the individual eye diagrams it is furthermore assumed  (from top to bottom):
 
*the redundancy-free binary code,
 
*the redundancy-free binary code,
 
*the AMI code (approx.  $37 \%$  redundancy),
 
*the AMI code (approx.  $37 \%$  redundancy),
Line 11: Line 13:
  
  
Further, the following conditions can be assumed:
+
Further,  the following conditions can be assumed:
*AWGN noise is present, where holds:
+
*AWGN noise is present,  where holds:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm} ({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg}\hspace{0.1cm} ({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB}\hspace{0.05cm}.$$
*The detection noise power has the following value for the binary system (due to the non-optimal receiver filter  $12 \%$ markup):
+
*The detection noise power has the following value for the binary system  (due to the non-optimal receiver filter  $12 \%$ markup):
 
:$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 T})\hspace{0.05cm}.$$
 
:$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 T})\hspace{0.05cm}.$$
 
*The symbol error probability of the binary system is:
 
*The symbol error probability of the binary system is:
 
:$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right) \hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right) \hspace{0.05cm}.$$
*In contrast, for the two redundant ternary systems:
+
*In contrast,  for the two redundant pseudo-ternary systems:
 
:$$p_{\rm S} = {4}/{3} \cdot {\rm Q} \left( s_0/(2 \sigma_d) \right) \hspace{0.05cm}.$$
 
:$$p_{\rm S} = {4}/{3} \cdot {\rm Q} \left( s_0/(2 \sigma_d) \right) \hspace{0.05cm}.$$
 
*It should be taken into account that the noise rms value  $\sigma_{d}$  may well change with respect to the redundancy-free binary system.
 
*It should be taken into account that the noise rms value  $\sigma_{d}$  may well change with respect to the redundancy-free binary system.
Line 25: Line 27:
  
  
 +
Notes:
 +
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"Symbolwise Coding with Pseudo-Ternary Codes"]].
  
 
+
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Blockweise_Codierung_mit_4B3T-Codes|"Block Coding with 4B3T Codes"]].
''Notes:''
 
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes|Symbol-Wise Coding with Pseudo Ternary Codes]].
 
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Blockweise_Codierung_mit_4B3T-Codes|Block Coding with 4B3T Codes]].
 
 
   
 
   
*For numerical evaluation of the Q-function you can use the interactive applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]].   
+
*For numerical evaluation of the Q-function you can use the HTML5/JavaScript applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].   
  
  
Line 39: Line 40:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Calculate the (normalized) noise rms value for the '''binary system'''.
+
{Calculate the&nbsp; (normalized)&nbsp; noise root mean square for the&nbsp; '''binary system'''.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{d}/s_{0} \ = \ $ { 0.237 3% }
 
$\sigma_{d}/s_{0} \ = \ $ { 0.237 3% }
Line 49: Line 50:
  
  
{What is the noise rms value for the system with '''AMI coding'''?
+
{What is the noise rms value for the system with&nbsp; '''AMI coding'''?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{d}/s_{0} \ = \ $ { 0.237 3% }
 
$\sigma_{d}/s_{0} \ = \ $ { 0.237 3% }
Line 59: Line 60:
  
  
{What is the noise rms value when using the '''4B3T code'''?
+
{What is the noise rms value when using the&nbsp; '''4B3T code'''?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_{d}/s_{0} \ = \ $ { 0.205 3% }
 
$\sigma_{d}/s_{0} \ = \ $ { 0.205 3% }
Line 71: Line 72:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  From the given S/N ratio, we obtain:
+
'''(1)'''&nbsp;  From the given S/N ratio,&nbsp; we obtain:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{N_0} = { s_0^2 \cdot T}/{10}$$
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{N_0} = { s_0^2 \cdot T}/{10}$$
 
:$$ \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma_d^2 = 1.12 \cdot {N_0}/({2 T}) = 0.056 \cdot s_0^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{ \sigma_d}/{s_0} \hspace{0.15cm}\underline { = 0.237}\hspace{0.05cm}.$$
 
:$$ \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma_d^2 = 1.12 \cdot {N_0}/({2 T}) = 0.056 \cdot s_0^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{ \sigma_d}/{s_0} \hspace{0.15cm}\underline { = 0.237}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; From this, it follows for the symbol error probability of the binary redundancy-free reference system:
+
'''(2)'''&nbsp; From this,&nbsp; it follows for the symbol error probability of the binary redundancy-free reference system:
 
:$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right)\approx {\rm Q}(4.22)\hspace{0.15cm}\underline { = 1.22 \cdot 10^{-5}} \hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right)\approx {\rm Q}(4.22)\hspace{0.15cm}\underline { = 1.22 \cdot 10^{-5}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; The symbol duration $T$ of the AMI encoded signal is equal to the bit duration $T_{\rm B}$ of the binary signal. Therefore, the bandwidth ratios do not change and the same noise rms value is obtained as calculated in point '''(1)''':
+
'''(3)'''&nbsp; The symbol duration&nbsp; $T$&nbsp; of the AMI encoded signal is equal to the bit duration&nbsp; $T_{\rm B}$&nbsp; of the binary signal.  
 +
*Therefore,&nbsp; the bandwidth ratios do not change and the same noise rms value is obtained as calculated in point&nbsp; '''(1)''':
 
:$${ \sigma_d}/{s_0}\hspace{0.15cm}\underline { = 0.237} \hspace{0.05cm}.$$
 
:$${ \sigma_d}/{s_0}\hspace{0.15cm}\underline { = 0.237} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp;  Due to the ternary decision, the argument of the Q-function is halved:
+
'''(4)'''&nbsp;  Due to the ternary decision,&nbsp; the argument of the Q-function is halved:
 
:$$p_{\rm S} \approx{4}/{3}\cdot {\rm Q}(2.11)={4}/{3} \cdot 1.74 \cdot 10^{-2}\hspace{0.15cm}\underline { = 2.32 \cdot 10^{-2}} \hspace{0.05cm}.$$
 
:$$p_{\rm S} \approx{4}/{3}\cdot {\rm Q}(2.11)={4}/{3} \cdot 1.74 \cdot 10^{-2}\hspace{0.15cm}\underline { = 2.32 \cdot 10^{-2}} \hspace{0.05cm}.$$
Here, the factor $4/3$ takes into account that the inner symbol $0$ can be distorted in two directions.
+
*Here,&nbsp; the factor&nbsp; $4/3$&nbsp; takes into account that the inner symbol&nbsp; $0$&nbsp; can be falsified in two directions.
 +
 
  
  
'''(5)'''&nbsp; When a 4B3T coding is applied, the symbol rate is reduced by $25 \%$. By the same factor $0.75$, this makes the noise power smaller than calculated in '''(1)''' and '''(3)'''. From this follows:
+
'''(5)'''&nbsp; When 4B3T coding is applied,&nbsp; the symbol rate is reduced by&nbsp; $25 \%$.  
 +
*By the same factor&nbsp; $0.75$,&nbsp; this makes the noise power smaller than calculated in&nbsp; '''(1)'''&nbsp; and&nbsp; '''(3)'''.&nbsp; From this follows:
 
:$${ \sigma_d}/{s_0} = \sqrt{0.75} \cdot 0.237 \hspace{0.15cm}\underline {\approx 0.205} \hspace{0.05cm}.$$
 
:$${ \sigma_d}/{s_0} = \sqrt{0.75} \cdot 0.237 \hspace{0.15cm}\underline {\approx 0.205} \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Due to the smaller noise rms value, the error probability is now smaller than with the AMI code:
+
'''(6)'''&nbsp; Due to the smaller noise rms value,&nbsp; the error probability is now smaller than with the AMI code:
 
:$$p_{\rm S} \approx {4}/{3} \cdot {\rm Q} \left( \frac{0.5}{ 0.205} \right) = {4}/{3} \cdot 0.833 \cdot 10^{-2}\hspace{0.15cm}\underline { = 1.11 \cdot 10^{-2}} \hspace{0.05cm}.$$
 
:$$p_{\rm S} \approx {4}/{3} \cdot {\rm Q} \left( \frac{0.5}{ 0.205} \right) = {4}/{3} \cdot 0.833 \cdot 10^{-2}\hspace{0.15cm}\underline { = 1.11 \cdot 10^{-2}} \hspace{0.05cm}.$$
However, the 4B3T code cannot achieve the significantly smaller error probability of the redundancy-free binary code due to the ternary decision (half eye opening).
+
*But the 4B3T code cannot achieve the significantly smaller error probability of the redundancy-free binary code due to the ternary decision&nbsp; (half eye opening).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Digital Signal Transmission: Exercises|^2.4 Pseudoternärcodes^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.4 Pseudo-Ternary Codes^]]

Latest revision as of 17:43, 25 May 2022


Eye diagrams of different codes

In the graphic three eye diagrams  (without noise)  are shown,  where in each case a rectangular NRZ basic transmission pulse and for the total system frequency response  (of transmitter, channel and decoder,  without encoder)  a cosine rolloff characteristic with rolloff factor  $r = 0.8$  are the basis.

For the individual eye diagrams it is furthermore assumed  (from top to bottom):

  • the redundancy-free binary code,
  • the AMI code (approx.  $37 \%$  redundancy),
  • the 4B3T code (approx.  $16  \%$ redundancy).


Further,  the following conditions can be assumed:

  • AWGN noise is present,  where holds:
$$10 \cdot {\rm lg}\hspace{0.1cm} ({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB}\hspace{0.05cm}.$$
  • The detection noise power has the following value for the binary system  (due to the non-optimal receiver filter  $12 \%$ markup):
$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 T})\hspace{0.05cm}.$$
  • The symbol error probability of the binary system is:
$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right) \hspace{0.05cm}.$$
  • In contrast,  for the two redundant pseudo-ternary systems:
$$p_{\rm S} = {4}/{3} \cdot {\rm Q} \left( s_0/(2 \sigma_d) \right) \hspace{0.05cm}.$$
  • It should be taken into account that the noise rms value  $\sigma_{d}$  may well change with respect to the redundancy-free binary system.



Notes:


Questions

1

Calculate the  (normalized)  noise root mean square for the  binary system.

$\sigma_{d}/s_{0} \ = \ $

2

What is the error probability of the binary system?

$\ p_{\rm S} \ = \ $

$\ \cdot 10^{-5}$

3

What is the noise rms value for the system with  AMI coding?

$\sigma_{d}/s_{0} \ = \ $

4

What is the error probability with AMI coding?

$\ p_{\rm S} \ = \ $

$\ \%$

5

What is the noise rms value when using the  4B3T code?

$\sigma_{d}/s_{0} \ = \ $

6

What is the error probability of the 4B3T code?

$\ p_{\rm S} \ = \ $

$\ \%$


Solution

(1)  From the given S/N ratio,  we obtain:

$$10 \cdot {\rm lg}\hspace{0.1cm}({s_0^2 \cdot T}/{N_0}) = 10\, {\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{N_0} = { s_0^2 \cdot T}/{10}$$
$$ \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma_d^2 = 1.12 \cdot {N_0}/({2 T}) = 0.056 \cdot s_0^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{ \sigma_d}/{s_0} \hspace{0.15cm}\underline { = 0.237}\hspace{0.05cm}.$$


(2)  From this,  it follows for the symbol error probability of the binary redundancy-free reference system:

$$p_{\rm S} = {\rm Q} \left( {s_0}/{ \sigma_d} \right)\approx {\rm Q}(4.22)\hspace{0.15cm}\underline { = 1.22 \cdot 10^{-5}} \hspace{0.05cm}.$$


(3)  The symbol duration  $T$  of the AMI encoded signal is equal to the bit duration  $T_{\rm B}$  of the binary signal.

  • Therefore,  the bandwidth ratios do not change and the same noise rms value is obtained as calculated in point  (1):
$${ \sigma_d}/{s_0}\hspace{0.15cm}\underline { = 0.237} \hspace{0.05cm}.$$


(4)  Due to the ternary decision,  the argument of the Q-function is halved:

$$p_{\rm S} \approx{4}/{3}\cdot {\rm Q}(2.11)={4}/{3} \cdot 1.74 \cdot 10^{-2}\hspace{0.15cm}\underline { = 2.32 \cdot 10^{-2}} \hspace{0.05cm}.$$
  • Here,  the factor  $4/3$  takes into account that the inner symbol  $0$  can be falsified in two directions.


(5)  When 4B3T coding is applied,  the symbol rate is reduced by  $25 \%$.

  • By the same factor  $0.75$,  this makes the noise power smaller than calculated in  (1)  and  (3).  From this follows:
$${ \sigma_d}/{s_0} = \sqrt{0.75} \cdot 0.237 \hspace{0.15cm}\underline {\approx 0.205} \hspace{0.05cm}.$$


(6)  Due to the smaller noise rms value,  the error probability is now smaller than with the AMI code:

$$p_{\rm S} \approx {4}/{3} \cdot {\rm Q} \left( \frac{0.5}{ 0.205} \right) = {4}/{3} \cdot 0.833 \cdot 10^{-2}\hspace{0.15cm}\underline { = 1.11 \cdot 10^{-2}} \hspace{0.05cm}.$$
  • But the 4B3T code cannot achieve the significantly smaller error probability of the redundancy-free binary code due to the ternary decision  (half eye opening).