Difference between revisions of "Aufgaben:Exercise 3.12Z: Ring and Feedback"

From LNTwww
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
 
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
[[File:P_ID2710__KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
+
[[File:EN_KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
In order to determine the path weighting enumerator function  $T(X)$  of a convolutional code from the state transition diagram, it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
+
In order to determine the path weighting enumerator function   $T(X)$   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
  
 
In the course of this diagram reduction can occur:
 
In the course of this diagram reduction can occur:
 
* serial and parallel transitions,
 
* serial and parallel transitions,
 +
 
* a ring according to the sketch above,
 
* a ring according to the sketch above,
 +
 
* a feedback according to the sketch below.
 
* a feedback according to the sketch below.
  
  
For these two graphs, find the correspondences  $E(X, \, U)$  and  $F(X, \, U)$  depending on the given functions  $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .
+
For these two graphs,  find the correspondences   $E(X, \, U)$   and   $F(X, \, U)$   depending on the given functions   $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .
 +
 
  
  
Line 18: Line 21:
  
  
 +
<u>Hints:</u>
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds| "Distance Characteristics and Error Probability Bounds"]].
  
Hints:
+
* This exercise is intended to prove some of the statements on the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]&nbsp; section.
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers| "Distance characteristics and error probability barriers"]].
+
 
* This exercise is intended to prove some of the statements on the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]&nbsp; page.
+
* Applied these rules in&nbsp; [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|$\text{Exercise 3.12}$]]&nbsp; and&nbsp; [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|$\text{Exercise 3.13}$]].
* Applied these rules in the&nbsp; [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|"Exercise 3.12"]]&nbsp; and the&nbsp; [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|"Exercise 3.13"]].
 
  
  
Line 56: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>solutions 1 and 2</u>:  
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:  
*In general terms, one first goes from $S_1$ to $S_2$, remains $j$&ndash;times in the state $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$, and finally continues from $S_2$ to $S_3$.
+
*In general terms,&nbsp; one first goes from&nbsp; $S_1$&nbsp; to&nbsp; $S_2$,&nbsp; remains&nbsp; $j$&ndash;times in the state&nbsp; $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$,&nbsp; and finally continues from&nbsp; $S_2$&nbsp; to&nbsp; $S_3$.
  
  
  
'''(2)'''&nbsp; Correct is the <u>solution suggestion 2</u>:
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>solution suggestion 2</u>:
*In accordance with the explanations for the subtask '''(1)''', one obtains for the substitution of the ring  
+
*In accordance with the explanations for subtask&nbsp; '''(1)''',&nbsp; one obtains for the substitution of the ring:
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*The parenthesis expression gives $1/(1 \, &ndash;C)$.  
+
*The parenthesis expression gives&nbsp; $1/(1 \, &ndash;C)$.  
 
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 72: Line 76:
  
 
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:  
 
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:  
* one goes first from $S_1$ to $S_2 \ \Rightarrow \ A(X, \, U)$,
+
* One goes first from&nbsp; $S_1$&nbsp; to&nbsp; $S_2 \ \Rightarrow \ A(X, \, U)$,
* then from $S_2$ to $S_3 \ \Rightarrow \ C(X, \, U)$,
+
 
* then $j$&ndash;times back to $S_2$ and again to $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
+
* then from&nbsp; $S_2$&nbsp; to&nbsp; $S_3 \ \Rightarrow \ C(X, \, U)$,
* finally from $S_3$ to $S_4 \ \Rightarrow \ B(X, \, U)$,
+
 
 +
* then&nbsp; $j$&ndash;times back to&nbsp; $S_2$&nbsp; and again to&nbsp; $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
 +
 
 +
* finally from&nbsp; $S_3$&nbsp; to&nbsp; $S_4 \ \Rightarrow \ B(X, \, U)$,
  
  
  
'''(4)'''&nbsp; Thus, the correct solution is <u>suggested solution 1</u>:
+
'''(4)'''&nbsp; Thus, the correct solution is the&nbsp; <u>suggested solution 1</u>:
*According to the sample solution to subtask '''(3)''' applies:
+
*According to the sample solution to subtask&nbsp; '''(3)'''&nbsp; applies:
 
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
 
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  
*Here $E(X, \, U)$ describes the path "$j$&ndash;times" back to $S_2$ and again to $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
+
*Here&nbsp; $E(X, \, U)$&nbsp; describes the path&nbsp; "$j$&ndash;times"&nbsp; back to&nbsp; $S_2$&nbsp; and again to&nbsp; $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
 
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 
\hspace{0.3cm}
 
\hspace{0.3cm}

Latest revision as of 18:27, 22 November 2022

Ring and feedback in the state transition diagram

In order to determine the path weighting enumerator function   $T(X)$   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.

In the course of this diagram reduction can occur:

  • serial and parallel transitions,
  • a ring according to the sketch above,
  • a feedback according to the sketch below.


For these two graphs,  find the correspondences   $E(X, \, U)$   and   $F(X, \, U)$   depending on the given functions   $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .





Hints:



Questions

1

Which of the listed transitions are possible with the ring?

$S_1 → S_2 → S_3$,
$S_1 → S_2 → S_2 → S_2 → S_3$,
$S_1 → S_2 → S_1 → S_2 → S_3$.

2

What is the substitution  $E(X, \, U)$  of a ring?

$E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.

3

Which of the listed transitions are possible with feedback?

$S_1 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$.

4

What is the substitution  $F(X, \, U)$  of a feedback?

$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.


Solution

(1)  Correct are the  solutions 1 and 2:

  • In general terms,  one first goes from  $S_1$  to  $S_2$,  remains  $j$–times in the state  $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$,  and finally continues from  $S_2$  to  $S_3$.


(2)  Correct is the  solution suggestion 2:

  • In accordance with the explanations for subtask  (1),  one obtains for the substitution of the ring:
$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
  • The parenthesis expression gives  $1/(1 \, –C)$.
$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$


(3)  Correct are the solutions 1, 3 and 4:

  • One goes first from  $S_1$  to  $S_2 \ \Rightarrow \ A(X, \, U)$,
  • then from  $S_2$  to  $S_3 \ \Rightarrow \ C(X, \, U)$,
  • then  $j$–times back to  $S_2$  and again to  $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
  • finally from  $S_3$  to  $S_4 \ \Rightarrow \ B(X, \, U)$,


(4)  Thus, the correct solution is the  suggested solution 1:

  • According to the sample solution to subtask  (3)  applies:
$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  • Here  $E(X, \, U)$  describes the path  "$j$–times"  back to  $S_2$  and again to  $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$