Difference between revisions of "Aufgaben:Exercise 3.2: Eye Pattern according to Gaussian Low-Pass"

From LNTwww
 
(45 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Ber%C3%BCcksichtigung_von_Impulsinterferenzen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference
 
}}
 
}}
  
[[File:P_ID1381__Dig_A_3_2.png|right|frame]]
+
[[File:P_ID1381__Dig_A_3_2.png|right|frame|Basic transmission pulse &nbsp;$g_s(t)$&nbsp; &rArr; &nbsp; blue curve,<br>basic detection pulse &nbsp;$g_d(t)$ &nbsp; &rArr; &nbsp; red curve ]]
Gegeben sei ein binäres bipolares redundanzfreies Basisbandsystem mit der Bitrate $R_B = 100\,{\rm Mbit/s}$ und folgenden Eigenschaften:
+
Let a binary bipolar redundancy-free baseband system with bit rate &nbsp;$R_{\rm B} = 100\,{\rm Mbit/s}$&nbsp;  be given.&nbsp; Further:
* Die Sendeimpulse seien rechteckförmig, die möglichen Amplitudenwerte sind $&plusmn; 1\,{\rm V}$.
+
* Rectangular transmission pulses,&nbsp; possible amplitude values &nbsp;$&plusmn; 1\,{\rm V}$.
* Die AWGN&ndash;Rauschleistungsdichte (auf den Widerstand $1 \, \Omega$) ist $10^{\rm -9} \, {\rm V}^2/{\rm Hz}$.
+
 
* Als Empfangsfilter wird ein Gaußtiefpass mit der Grenzfrequenz $f_G = 50 \, {\rm MHz}$ verwendet. Der Frequenzgang lautet:
+
* The AWGN noise power density &nbsp;$($on the resistor &nbsp;$1 \, \Omega)$:&nbsp;  $N_0=10^{\rm -9} \, {\rm V}^2/{\rm Hz}$.
 +
 
 +
* Receiver filter is a Gaussian low-pass with cutoff frequency &nbsp;$f_{\rm G} = 50 \, {\rm MHz}$.&nbsp; The frequency response is:
 
:$$H_{\rm G}(f) = {\rm e}^{- \pi  \hspace{0.05cm}\cdot \hspace{0.05cm}{f}^2/({2f_{\rm G}})^2}
 
:$$H_{\rm G}(f) = {\rm e}^{- \pi  \hspace{0.05cm}\cdot \hspace{0.05cm}{f}^2/({2f_{\rm G}})^2}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* Der Detektionsgrundimpuls $g_d(t) = g_s(t) * h_G(t)$ ist in der Grafik dargestellt (rote Kurve). Einige markante Impulswerte sind angegeben.
+
* The basic detection pulse &nbsp;$g_d(t) = g_s(t) * h_{\rm G}(t)$&nbsp; is shown in the graph (red curve). <br>Some prominent pulse sample values are indicated.
* Die Detektionsrauschleistung kann mit folgender Gleichung berechnet werden:
+
 
 +
* The detection noise power can be calculated using the following equation:
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
 
|H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
  
Zur Bestimmung der Fehlerwahrscheinlichkeit kann man zum Beispiel das Augendiagramm heranziehen.
+
The&nbsp; "eye diagram"&nbsp; can be used to determine the bit error probability&nbsp; $($in general:&nbsp; symbol error probability$)$.
* Die mittlere Symbolfehlerwahrscheinlichkeit $p_S$ ergibt sich daraus nach einer Mittelung über alle möglichen Detektionsnutzabtastwerte.
 
* Als eine obere Schranke für $p_S$ dient die ungünstige Fehlerwahrscheinlichkeit.
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
  \right) \hspace{0.3cm}{\rm mit}\hspace{0.3cm}\frac{\ddot{o}(T_{\rm D})}{ 2}= g_d(t=0) - |g_d(t=T)|- |g_d(t=-T)|-\hspace{0.15cm} ...$$
 
  
Hierbei bezeichnet $\ddot{o}(T_D)$ die vertikale Augenöffnung. Der Detektionszeitpunkt $T_D = 0$ sei optimal gewählt.
+
# The mean symbol error probability &nbsp;$p_{\rm S}$&nbsp; is obtained from this after averaging over all possible noiseless detection samples in consideration of the noise rms value&nbsp; $\sigma_d$.
 +
# The worst-case error probability serves as an upper bound for &nbsp;$p_{\rm S}$:&nbsp;
 +
::$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 +
  \right) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\frac{\ddot{o}(T_{\rm D})}{ 2}= g_d(t=0) - |g_d(t=T)|- |g_d(t=-T)|-\hspace{0.01cm}\text{ ...}$$
  
''Hinweis:'' Die Aufgabe bezieht sich auf das [[Digitalsignal%C3%BCbertragung/Grundlagen_der_codierten_%C3%9Cbertragung|Kapitel 3.2]]. Verwenden Sie zur numerischen Auswertung der O&ndash;Funktion das folgende Interaktionsmodul:
+
::Here, &nbsp;$\ddot{o}(T_{\rm D})$&nbsp; denotes the vertical eye opening.&nbsp; Let the detection time &nbsp;$T_{\rm D} = 0$&nbsp; be optimally chosen.
[https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=1706&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross| Komplementäre Gaußsche Fehlerfunktionen]
 
  
  
===Fragebogen===
+
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference|"Error Probability with Intersymbol Interference"]].
 +
 
 +
* Use our HTML5/JavaScript applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]] for the numerical evaluation of the Q&ndash;function.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the symbol duration?
|type="[]"}
+
|type="{}"}
- Falsch
+
$T \ = \ $ { 10 3% } $\ {\rm ns}$
+ Richtig
 
  
 +
{What is the rms value of the detection noise signal?
 +
|type="{}"}
 +
$\sigma_d\ = \ $ { 0.188 3% } $\ {\rm V}$
  
{Input-Box Frage
+
{What are the basic detection pulse samples &nbsp;$g_{\rm \nu} = g_d(\nu \cdot T)$,&nbsp; in particular
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$g_0\ = \ $ { 0.79 3% } $\ {\rm V}$
 +
$g_1\ = \ $ { 0.105 3% } $\ {\rm V}$
 +
$g_2\ = \ $ { 0 3% } $\ {\rm V}$
  
 +
{Calculate the eye opening and the worst-case error probability.
 +
|type="{}"}
 +
$\ddot{o}(T_{\rm D})\ = \ $ { 1.16 3% } $\ {\rm V}$
 +
$p_{\rm U}\ = \ $ { 1 3% } $\ \cdot 10^{\rm -3}$
  
 +
{Calculate the average error probability &nbsp;$p_{\rm S}$&nbsp; by averaging over the possible noiseless samples.
 +
|type="{}"}
 +
$p_{\rm S}\ = \ $ { 0.256 3% } $\ \cdot 10^{\rm -3}$
  
 +
{What would be the minimum increase in transmitted pulse amplitude &nbsp;$s_0$&nbsp; required to satisfy the condition &nbsp;$p_{\rm S} \ &#8804; 10^{\rm -10}$?&nbsp;
 +
|type="{}"}
 +
$s_0\ = \ ${ 1.993 3% } $\ {\rm V}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The symbol duration is the reciprocal of the bit rate:
'''(2)'''&nbsp;
+
:$$T = \frac{1}{10^8\,{\rm bit/s}} = 10^{-8}\,{\rm s}\hspace{0.15cm}\underline { = 10\,{\rm ns}}
'''(3)'''&nbsp;
+
\hspace{0.05cm}.$$
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
'''(2)'''&nbsp; Integration according to the given equation leads to:
'''(6)'''&nbsp;
+
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 +
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
 +
G}}{\sqrt{2}}= \frac{10^{-9}\,{\rm V/Hz} \cdot 5 \cdot
 +
10^{7}\,{\rm Hz} }{\sqrt{2}}\approx 0.035\,{\rm V^2}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}\sigma_d \hspace{0.15cm}\underline { = 0.188\,{\rm
 +
V}}\hspace{0.05cm}.$$
 +
 
 +
'''(3)'''&nbsp; These values can be obtained from the graph:
 +
:$$g_0 = g_d(0)\hspace{0.15cm}\underline { = 0.790\,{\rm V}}, \hspace{0.2cm}g_1 = g_d(10\,{\rm
 +
ns}) \hspace{0.15cm}\underline {= 0.105\,{\rm V}}= g_{-1}, \hspace{0.2cm}g_2  = g_{-2} \hspace{0.15cm}\underline { \approx
 +
0} \hspace{0.05cm}.$$
 +
 
 +
'''(4)'''&nbsp; Using the basic detection pulse values calculated in&nbsp; '''(3)''',&nbsp; we obtain for the vertical eye opening:
 +
:$$\ddot{o}(T_{\rm D}) = 2 \cdot (g_0 - g_1 - g_{-1}) = 2 \cdot
 +
(0.790\,{\rm V} - 2\cdot 0.105\,{\rm V}) \hspace{0.15cm}\underline {= 1.16\,{\rm
 +
V}}\hspace{0.05cm}.$$
 +
[[File:EN_Dig_A_3_2_neu.png|right|frame|Eye diagram with and without noise]]
 +
*The right graph shows the noisless eye diagram.&nbsp; One can see from this the vertical eye opening in the center of the symbol:
 +
:$$\ddot{o}(T_{\rm D} = 0) = 2 \cdot 0.58 \cdot s_0.$$
  
 +
*Together with the noise rms value,&nbsp; we obtain for the worst-case error probability:
 +
:$$p_{\rm U} = {\rm Q} \left( \frac{1.16\,{\rm
 +
V}/2}{ 0.188\,{\rm V}}
 +
  \right) \approx {\rm Q}(3.08)\hspace{0.15cm}\underline {\approx 10^{-3}}
 +
  \hspace{0.05cm}.$$
 +
 +
'''(5)'''&nbsp; From the noisless eye diagram,&nbsp; one can see that the signal component at the detection time&nbsp; $T_{\rm D} = 0$&nbsp; can assume six different values.
 +
 +
*In the upper half of the eye,&nbsp; these are:
 +
:$$1.)\hspace{0.2cm} g_0 + g_1 + g_{-1} = 0.790\,{\rm V} + 2\cdot 0.105\,{\rm
 +
V}= 1\,{\rm V} = s_0$$
 +
:$$\Rightarrow \hspace{0.3cm}
 +
p_{\rm 1} = {\rm Q} \left( \frac{1\,{\rm
 +
V}}{ 0.188\,{\rm V}}
 +
  \right) \approx 5 \cdot 10^{-8}
 +
  \hspace{0.05cm},$$
 +
:$$2.)\hspace{0.2cm} g_0 = 0.790\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
p_{\rm 2} = {\rm Q} \left( \frac{0.790\,{\rm
 +
V}}{ 0.188\,{\rm V}}
 +
  \right) \approx 1.3 \cdot 10^{-5}
 +
  \hspace{0.05cm},$$
 +
:$$3.)\hspace{0.2cm} g_0 - g_1 - g_{-1} = 0.580\,{\rm V} = \ddot{o}(T_{\rm
 +
D})/2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm 3} = p_{\rm U} \approx  10^{-3}
 +
  \hspace{0.05cm}.$$
 +
 +
*Averaging over these values with appropriate weighting &nbsp;$(p_2$&nbsp; occurs twice as often as&nbsp; $p_1$&nbsp; and&nbsp; $p_3)$&nbsp; gives:
 +
:$$p_{\rm S} \ = \ {1}/{4} \cdot (p_{\rm 1} + 2 \cdot p_{\rm 2} + p_{\rm 3})
 +
  = {1}/{4} \cdot (5 \cdot 10^{-8} + 2 \cdot 1.3 \cdot 10^{-5} + 10^{-3})
 +
\hspace{0.15cm}\underline {  \approx 0.256 \cdot 10^{-3}}
 +
  \hspace{0.05cm}.$$
 +
*Since&nbsp; $p_1$&nbsp; and&nbsp; $p_2$&nbsp; are much smaller than&nbsp; $p_3 = p_{\rm U}$,&nbsp; the average error probability is (almost) a factor of &nbsp;$4$&nbsp; smaller than &nbsp;$p_{\rm U}$.
 +
 +
 +
 +
'''(6)'''&nbsp; To reduce the error probability,&nbsp; $s_0$&nbsp; must be increased.&nbsp; Thus,&nbsp; the approximation &nbsp;$p_{\rm S} &asymp; p_{\rm U}/4$&nbsp; is even more accurate:
 +
:$$p_{\rm S} \le 10^{-10}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm U} = {\rm Q} \left( \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}}
 +
  \right)\le 4 \cdot 10^{-10}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}}
 +
  \ge 6.15 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_0 \ge 1.993\,{\rm V} \hspace{0.15cm}\underline { \approx 2\,{\rm V}}
 +
  \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.2 Bitfehlerrate mit Impulsinterferenzen^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.2 BER with Intersymbol Interference^]]

Latest revision as of 16:36, 28 June 2022

Basic transmission pulse  $g_s(t)$  ⇒   blue curve,
basic detection pulse  $g_d(t)$   ⇒   red curve

Let a binary bipolar redundancy-free baseband system with bit rate  $R_{\rm B} = 100\,{\rm Mbit/s}$  be given.  Further:

  • Rectangular transmission pulses,  possible amplitude values  $± 1\,{\rm V}$.
  • The AWGN noise power density  $($on the resistor  $1 \, \Omega)$:  $N_0=10^{\rm -9} \, {\rm V}^2/{\rm Hz}$.
  • Receiver filter is a Gaussian low-pass with cutoff frequency  $f_{\rm G} = 50 \, {\rm MHz}$.  The frequency response is:
$$H_{\rm G}(f) = {\rm e}^{- \pi \hspace{0.05cm}\cdot \hspace{0.05cm}{f}^2/({2f_{\rm G}})^2} \hspace{0.05cm}.$$
  • The basic detection pulse  $g_d(t) = g_s(t) * h_{\rm G}(t)$  is shown in the graph (red curve).
    Some prominent pulse sample values are indicated.
  • The detection noise power can be calculated using the following equation:
$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$

The  "eye diagram"  can be used to determine the bit error probability  $($in general:  symbol error probability$)$.

  1. The mean symbol error probability  $p_{\rm S}$  is obtained from this after averaging over all possible noiseless detection samples in consideration of the noise rms value  $\sigma_d$.
  2. The worst-case error probability serves as an upper bound for  $p_{\rm S}$: 
$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\frac{\ddot{o}(T_{\rm D})}{ 2}= g_d(t=0) - |g_d(t=T)|- |g_d(t=-T)|-\hspace{0.01cm}\text{ ...}$$
Here,  $\ddot{o}(T_{\rm D})$  denotes the vertical eye opening.  Let the detection time  $T_{\rm D} = 0$  be optimally chosen.



Notes:



Questions

1

What is the symbol duration?

$T \ = \ $

$\ {\rm ns}$

2

What is the rms value of the detection noise signal?

$\sigma_d\ = \ $

$\ {\rm V}$

3

What are the basic detection pulse samples  $g_{\rm \nu} = g_d(\nu \cdot T)$,  in particular

$g_0\ = \ $

$\ {\rm V}$
$g_1\ = \ $

$\ {\rm V}$
$g_2\ = \ $

$\ {\rm V}$

4

Calculate the eye opening and the worst-case error probability.

$\ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$
$p_{\rm U}\ = \ $

$\ \cdot 10^{\rm -3}$

5

Calculate the average error probability  $p_{\rm S}$  by averaging over the possible noiseless samples.

$p_{\rm S}\ = \ $

$\ \cdot 10^{\rm -3}$

6

What would be the minimum increase in transmitted pulse amplitude  $s_0$  required to satisfy the condition  $p_{\rm S} \ ≤ 10^{\rm -10}$? 

$s_0\ = \ $

$\ {\rm V}$


Solution

(1)  The symbol duration is the reciprocal of the bit rate:

$$T = \frac{1}{10^8\,{\rm bit/s}} = 10^{-8}\,{\rm s}\hspace{0.15cm}\underline { = 10\,{\rm ns}} \hspace{0.05cm}.$$

(2)  Integration according to the given equation leads to:

$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}}= \frac{10^{-9}\,{\rm V/Hz} \cdot 5 \cdot 10^{7}\,{\rm Hz} }{\sqrt{2}}\approx 0.035\,{\rm V^2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\sigma_d \hspace{0.15cm}\underline { = 0.188\,{\rm V}}\hspace{0.05cm}.$$

(3)  These values can be obtained from the graph:

$$g_0 = g_d(0)\hspace{0.15cm}\underline { = 0.790\,{\rm V}}, \hspace{0.2cm}g_1 = g_d(10\,{\rm ns}) \hspace{0.15cm}\underline {= 0.105\,{\rm V}}= g_{-1}, \hspace{0.2cm}g_2 = g_{-2} \hspace{0.15cm}\underline { \approx 0} \hspace{0.05cm}.$$

(4)  Using the basic detection pulse values calculated in  (3),  we obtain for the vertical eye opening:

$$\ddot{o}(T_{\rm D}) = 2 \cdot (g_0 - g_1 - g_{-1}) = 2 \cdot (0.790\,{\rm V} - 2\cdot 0.105\,{\rm V}) \hspace{0.15cm}\underline {= 1.16\,{\rm V}}\hspace{0.05cm}.$$
Eye diagram with and without noise
  • The right graph shows the noisless eye diagram.  One can see from this the vertical eye opening in the center of the symbol:
$$\ddot{o}(T_{\rm D} = 0) = 2 \cdot 0.58 \cdot s_0.$$
  • Together with the noise rms value,  we obtain for the worst-case error probability:
$$p_{\rm U} = {\rm Q} \left( \frac{1.16\,{\rm V}/2}{ 0.188\,{\rm V}} \right) \approx {\rm Q}(3.08)\hspace{0.15cm}\underline {\approx 10^{-3}} \hspace{0.05cm}.$$

(5)  From the noisless eye diagram,  one can see that the signal component at the detection time  $T_{\rm D} = 0$  can assume six different values.

  • In the upper half of the eye,  these are:
$$1.)\hspace{0.2cm} g_0 + g_1 + g_{-1} = 0.790\,{\rm V} + 2\cdot 0.105\,{\rm V}= 1\,{\rm V} = s_0$$
$$\Rightarrow \hspace{0.3cm} p_{\rm 1} = {\rm Q} \left( \frac{1\,{\rm V}}{ 0.188\,{\rm V}} \right) \approx 5 \cdot 10^{-8} \hspace{0.05cm},$$
$$2.)\hspace{0.2cm} g_0 = 0.790\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm 2} = {\rm Q} \left( \frac{0.790\,{\rm V}}{ 0.188\,{\rm V}} \right) \approx 1.3 \cdot 10^{-5} \hspace{0.05cm},$$
$$3.)\hspace{0.2cm} g_0 - g_1 - g_{-1} = 0.580\,{\rm V} = \ddot{o}(T_{\rm D})/2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm 3} = p_{\rm U} \approx 10^{-3} \hspace{0.05cm}.$$
  • Averaging over these values with appropriate weighting  $(p_2$  occurs twice as often as  $p_1$  and  $p_3)$  gives:
$$p_{\rm S} \ = \ {1}/{4} \cdot (p_{\rm 1} + 2 \cdot p_{\rm 2} + p_{\rm 3}) = {1}/{4} \cdot (5 \cdot 10^{-8} + 2 \cdot 1.3 \cdot 10^{-5} + 10^{-3}) \hspace{0.15cm}\underline { \approx 0.256 \cdot 10^{-3}} \hspace{0.05cm}.$$
  • Since  $p_1$  and  $p_2$  are much smaller than  $p_3 = p_{\rm U}$,  the average error probability is (almost) a factor of  $4$  smaller than  $p_{\rm U}$.


(6)  To reduce the error probability,  $s_0$  must be increased.  Thus,  the approximation  $p_{\rm S} ≈ p_{\rm U}/4$  is even more accurate:

$$p_{\rm S} \le 10^{-10}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm U} = {\rm Q} \left( \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}} \right)\le 4 \cdot 10^{-10}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}} \ge 6.15 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_0 \ge 1.993\,{\rm V} \hspace{0.15cm}\underline { \approx 2\,{\rm V}} \hspace{0.05cm}.$$