Difference between revisions of "Aufgaben:Exercise 3.2: Eye Pattern according to Gaussian Low-Pass"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
Line 1: Line 1:
{{quiz-Header|Buchseite=Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Ber%C3%BCcksichtigung_von_Impulsinterferenzen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference
 
}}
 
}}
  
[[File:P_ID1381__Dig_A_3_2.png|right|frame|Sende– und Detektionsgrundimpuls]]
+
[[File:P_ID1381__Dig_A_3_2.png|right|frame|Transmission and basic transmitter pulse]]
Gegeben sei ein binäres bipolares redundanzfreies Basisbandsystem mit der Bitrate  $R_{\rm B} = 100\,{\rm Mbit/s}$  und folgenden Eigenschaften:
+
Let a binary bipolar redundancy-free baseband system with bit rate  $R_{\rm B} = 100\,{\rm Mbit/s}$  and the following properties be given:
* Die Sendeimpulse seien rechteckförmig, die möglichen Amplitudenwerte sind  $± 1\,{\rm V}$.
+
* Let the transmitted pulses be rectangular, and the possible amplitude values be  $± 1\,{\rm V}$.
* Die AWGN–Rauschleistungsdichte  $($auf den Widerstand  $1 \, \Omega)$  beträgt $10^{\rm -9} \, {\rm V}^2/{\rm Hz}$.
+
* The AWGN noise power density  $($on the resistor  $1 \, \Omega)$  is $10^{\rm -9} \, {\rm V}^2/{\rm Hz}$.
* Als Empfangsfilter wird ein Gaußtiefpass mit der Grenzfrequenz  $f_{\rm G} = 50 \, {\rm MHz}$  verwendet. Der Frequenzgang lautet:
+
* A Gaussian low-pass filter with cutoff frequency  $f_{\rm G} = 50 \, {\rm MHz}$  is used as the receiver filter. The frequency response is:
 
:$$H_{\rm G}(f) = {\rm e}^{- \pi  \hspace{0.05cm}\cdot \hspace{0.05cm}{f}^2/({2f_{\rm G}})^2}
 
:$$H_{\rm G}(f) = {\rm e}^{- \pi  \hspace{0.05cm}\cdot \hspace{0.05cm}{f}^2/({2f_{\rm G}})^2}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* Der Detektionsgrundimpuls  $g_d(t) = g_s(t) * h_{\rm G}(t)$  ist in der Grafik dargestellt (rote Kurve). Einige markante Impulswerte sind angegeben.
+
* The basic transmitter pulse  $g_d(t) = g_s(t) * h_{\rm G}(t)$  is shown in the graph (red curve). Some prominent pulse values are indicated.
* Die Detektionsrauschleistung kann mit folgender Gleichung berechnet werden:
+
* The detection noise power can be calculated using the following equation:
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
 
|H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
  
Zur Bestimmung der Fehlerwahrscheinlichkeit kann man zum Beispiel das Augendiagramm heranziehen.
+
For example, the eye diagram can be used to determine the error probability.
* Die mittlere Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$  ergibt sich daraus nach einer Mittelung über alle möglichen Detektionsnutzabtastwerte.
+
* The mean symbol error probability  $p_{\rm S}$  is obtained from this after averaging over all possible detection useful samples.
* Als eine obere Schranke für  $p_{\rm S}$  dient die ungünstige Fehlerwahrscheinlichkeit.
+
* The worst-case error probability serves as an upper bound for  $p_{\rm S}$. 
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
   \right) \hspace{0.3cm}{\rm mit}\hspace{0.3cm}\frac{\ddot{o}(T_{\rm D})}{ 2}= g_d(t=0) - |g_d(t=T)|- |g_d(t=-T)|-\hspace{0.01cm}\text{ ...}$$
+
   \right) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\frac{\ddot{o}(T_{\rm D})}{ 2}= g_d(t=0) - |g_d(t=T)|- |g_d(t=-T)|-\hspace{0.01cm}\text{ ...}$$
  
Hierbei bezeichnet  $\ddot{o}(T_{\rm D})$  die vertikale Augenöffnung. Der Detektionszeitpunkt  $T_{\rm D} = 0$  sei optimal gewählt.
+
Here,  $\ddot{o}(T_{\rm D})$  denotes the vertical eye opening. Let the detection time  $T_{\rm D} = 0$  be optimally chosen.
  
  
Line 27: Line 27:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel  [[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|Fehlerwahrscheinlichkeit unter Berücksichtigung von Impulsinterferenzen]].   
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference|Error Probability with Intersymbol Interference]].   
* Verwenden Sie zur numerischen Auswertung der Q–Funktion das Interaktionsmodul  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]].
+
* Use the interaction module  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]] for the numerical evaluation of the Q-function.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Symboldauer?
+
{What is the symbol duration?
 
|type="{}"}
 
|type="{}"}
 
$T \ = \ $ { 10 3% } $\ {\rm ns}$
 
$T \ = \ $ { 10 3% } $\ {\rm ns}$
  
{Wie groß ist der Effektivwert des Detektionsrauschsignals?
+
{What is the rms value of the detection noise signal?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_d\ = \ $ { 0.188 3% } $\ {\rm V}$
 
$\sigma_d\ = \ $ { 0.188 3% } $\ {\rm V}$
  
{Wie lauten die Detektionsgrundimpulswerte &nbsp;$g_{\rm \nu} = g_d(\nu \cdot T)$, insbesondere
+
{What are the basic transmitter pulse values &nbsp;$g_{\rm \nu} = g_d(\nu \cdot T)$, in particular
 
|type="{}"}
 
|type="{}"}
 
$g_0\ = \ $ { 0.79 3% } $\ {\rm V}$
 
$g_0\ = \ $ { 0.79 3% } $\ {\rm V}$
Line 51: Line 51:
 
$g_2\ = \ $ { 0 3% } $\ {\rm V}$
 
$g_2\ = \ $ { 0 3% } $\ {\rm V}$
  
{Berechnen Sie die Augenöffnung und die ungünstigste Fehlerwahrscheinlichkeit.
+
{Calculate the eye opening and the worst-case error probability.
 
|type="{}"}
 
|type="{}"}
 
$\ddot{o}(T_{\rm D})\ = \ $ { 1.16 3% } $\ {\rm V}$
 
$\ddot{o}(T_{\rm D})\ = \ $ { 1.16 3% } $\ {\rm V}$
 
$p_{\rm U}\ = \ $ { 1 3% } $\ \cdot 10^{\rm -3}$
 
$p_{\rm U}\ = \ $ { 1 3% } $\ \cdot 10^{\rm -3}$
  
{Berechnen Sie die mittlere Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S}$&nbsp; durch Mittelung über die möglichen Nutzabtastwerte.
+
{Calculate the average error probability &nbsp;$p_{\rm S}$&nbsp; by averaging over the possible useful samples.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S}\ = \ $ { 0.256 3% } $\ \cdot 10^{\rm -3}$
 
$p_{\rm S}\ = \ $ { 0.256 3% } $\ \cdot 10^{\rm -3}$
  
{Wie müsste die Sendeimpulsamplitude &nbsp;$s_0$&nbsp; mindestens erhöht werden, damit die Bedingung &nbsp;$p_{\rm S} \ &#8804; 10^{\rm -10}$&nbsp; erfüllt wird?
+
{What would be the minimum increase in transmitted pulse amplitude &nbsp;$s_0$&nbsp; required to satisfy the condition &nbsp;$p_{\rm S} \ &#8804; 10^{\rm -10}$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$s_0\ = \ ${ 1.993 3% } $\ {\rm V}$
 
$s_0\ = \ ${ 1.993 3% } $\ {\rm V}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Symboldauer ist der Kehrwert der Bitrate:
+
'''(1)'''&nbsp; The symbol duration is the reciprocal of the bit rate:
 
:$$T = \frac{1}{10^8\,{\rm bit/s}} = 10^{-8}\,{\rm s}\hspace{0.15cm}\underline { = 10\,{\rm ns}}
 
:$$T = \frac{1}{10^8\,{\rm bit/s}} = 10^{-8}\,{\rm s}\hspace{0.15cm}\underline { = 10\,{\rm ns}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Die Integration entsprechend der angegebenen Gleichung führt auf:
+
'''(2)'''&nbsp; Integration according to the given equation leads to:
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
Line 81: Line 81:
  
  
'''(3)'''&nbsp; Diese Werte können aus der Grafik entnommen werden:
+
'''(3)'''&nbsp; These values can be obtained from the graph:
 
:$$g_0 = g_d(0)\hspace{0.15cm}\underline { = 0.790\,{\rm V}}, \hspace{0.2cm}g_1 = g_d(10\,{\rm
 
:$$g_0 = g_d(0)\hspace{0.15cm}\underline { = 0.790\,{\rm V}}, \hspace{0.2cm}g_1 = g_d(10\,{\rm
 
ns}) \hspace{0.15cm}\underline {= 0.105\,{\rm V}}= g_{-1}, \hspace{0.2cm}g_2  = g_{-2} \hspace{0.15cm}\underline { \approx
 
ns}) \hspace{0.15cm}\underline {= 0.105\,{\rm V}}= g_{-1}, \hspace{0.2cm}g_2  = g_{-2} \hspace{0.15cm}\underline { \approx
Line 87: Line 87:
  
  
'''(4)'''&nbsp; Mit den unter '''(3)''' berechneten Grundimpulswerten erhält man für die vertikale Augenöffnung:
+
'''(4)'''&nbsp; Using the basic pulse values calculated in '''(3)''', we obtain for the vertical eye opening:
 
:$$\ddot{o}(T_{\rm D}) = 2 \cdot (g_0 - g_1 - g_{-1}) = 2 \cdot
 
:$$\ddot{o}(T_{\rm D}) = 2 \cdot (g_0 - g_1 - g_{-1}) = 2 \cdot
 
(0.790\,{\rm V} - 2\cdot 0.105\,{\rm V})  \hspace{0.15cm}\underline {= 1.16\,{\rm
 
(0.790\,{\rm V} - 2\cdot 0.105\,{\rm V})  \hspace{0.15cm}\underline {= 1.16\,{\rm
 
V}}\hspace{0.05cm}.$$
 
V}}\hspace{0.05cm}.$$
[[File:P_ID1382__Dig_A_3_2d.png|right|frame|Augendiagramm mit und ohne Rauschen]]
+
[[File:P_ID1382__Dig_A_3_2d.png|right|frame|Eye diagram with and without noise]]
Zusammen mit dem Rauscheffektivwert erhält man somit für die ungünstigste Fehlerwahrscheinlichkeit:
+
Thus, together with the noise rms value, we obtain for the worst-case error probability:
 
:$$p_{\rm U} = {\rm Q} \left( \frac{1.16\,{\rm
 
:$$p_{\rm U} = {\rm Q} \left( \frac{1.16\,{\rm
 
V}/2}{ 0.188\,{\rm V}}
 
V}/2}{ 0.188\,{\rm V}}
Line 98: Line 98:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Die Grafik zeigt rechts das Augendiagramm ohne Rauschen. Man erkennt hieraus die vertikale Augenöffnung in Symbolmitte:  
+
The graph on the right shows the eye diagram without noise. One can see from this the vertical eye opening in the center of the symbol:
 
:$$\ddot{o}(T_{\rm D} = 0) = 2 \cdot 0.58 \cdot s_0.$$
 
:$$\ddot{o}(T_{\rm D} = 0) = 2 \cdot 0.58 \cdot s_0.$$
 
<br clear=all>
 
<br clear=all>
'''(5)'''&nbsp; Aus obigem Augendiagramm erkennt man, dass das Nutzsignal zum Detektionszeitpunkt $T_{\rm D} = 0$ sechs verschiedene Werte annehmen kann. In der oberen Augenhälfte sind dies:
+
'''(5)'''&nbsp; From the above eye diagram, one can see that the signal component at the detection time $T_{\rm D} = 0$ can assume six different values. In the upper half of the eye, these are:
 
:$$1.)\hspace{0.2cm} g_0 + g_1 + g_{-1} = 0.790\,{\rm V} + 2\cdot 0.105\,{\rm
 
:$$1.)\hspace{0.2cm} g_0 + g_1 + g_{-1} = 0.790\,{\rm V} + 2\cdot 0.105\,{\rm
 
  V}= 1\,{\rm V} = s_0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  V}= 1\,{\rm V} = s_0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 117: Line 117:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Durch Mittelung über diese Werte mit geeigneter Gewichtung &nbsp;$(p_2$ tritt doppelt so oft wie $p_1$ und $p_3$ auf$)$&nbsp; erhält man:  
+
Averaging over these values with appropriate weighting &nbsp;$(p_2$ occurs twice as often as $p_1$ and $p_3$ auf$)$&nbsp; gives:
 
:$$p_{\rm S} \ = \ {1}/{4} \cdot (p_{\rm 1} + 2 \cdot p_{\rm 2} + p_{\rm 3})
 
:$$p_{\rm S} \ = \ {1}/{4} \cdot (p_{\rm 1} + 2 \cdot p_{\rm 2} + p_{\rm 3})
 
   = {1}/{4} \cdot (5 \cdot 10^{-8} + 2 \cdot 1.3 \cdot 10^{-5} + 10^{-3})
 
   = {1}/{4} \cdot (5 \cdot 10^{-8} + 2 \cdot 1.3 \cdot 10^{-5} + 10^{-3})
 
  \hspace{0.15cm}\underline {  \approx 0.256 \cdot 10^{-3}}
 
  \hspace{0.15cm}\underline {  \approx 0.256 \cdot 10^{-3}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Da $p_1$ und $p_2$ sehr viel kleiner als $p_3 = p_{\rm U}$ sind, ist die mittlere Fehlerwahrscheinlichkeit (nahezu) um den Faktor  &nbsp;$4$&nbsp; kleiner als &nbsp;$p_{\rm U}$.
+
Since $p_1$ and $p_2$ are much smaller than $p_3 = p_{\rm U}$, the average error probability is (almost) a factor of &nbsp;$4$&nbsp; smaller than &nbsp;$p_{\rm U}$.
  
  
'''(6)'''&nbsp; Um die Fehlerwahrscheinlichkeit zu verkleinern, muss $s_0$ vergrößert werden. Damit ist die Näherung &nbsp;$p_{\rm S} &asymp; p_{\rm U}/4$&nbsp; noch genauer:
+
'''(6)'''&nbsp; To reduce the error probability, $s_0$ must be increased. Thus, the approximation &nbsp;$p_{\rm S} &asymp; p_{\rm U}/4$&nbsp; is even more accurate:
 
:$$p_{\rm S} \le 10^{-10}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm U} = {\rm Q} \left( \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}}
 
:$$p_{\rm S} \le 10^{-10}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm U} = {\rm Q} \left( \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}}
 
   \right)\le 4 \cdot 10^{-10}\hspace{0.3cm}
 
   \right)\le 4 \cdot 10^{-10}\hspace{0.3cm}

Revision as of 13:37, 26 April 2022

Transmission and basic transmitter pulse

Let a binary bipolar redundancy-free baseband system with bit rate  $R_{\rm B} = 100\,{\rm Mbit/s}$  and the following properties be given:

  • Let the transmitted pulses be rectangular, and the possible amplitude values be  $± 1\,{\rm V}$.
  • The AWGN noise power density  $($on the resistor  $1 \, \Omega)$  is $10^{\rm -9} \, {\rm V}^2/{\rm Hz}$.
  • A Gaussian low-pass filter with cutoff frequency  $f_{\rm G} = 50 \, {\rm MHz}$  is used as the receiver filter. The frequency response is:
$$H_{\rm G}(f) = {\rm e}^{- \pi \hspace{0.05cm}\cdot \hspace{0.05cm}{f}^2/({2f_{\rm G}})^2} \hspace{0.05cm}.$$
  • The basic transmitter pulse  $g_d(t) = g_s(t) * h_{\rm G}(t)$  is shown in the graph (red curve). Some prominent pulse values are indicated.
  • The detection noise power can be calculated using the following equation:
$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$

For example, the eye diagram can be used to determine the error probability.

  • The mean symbol error probability  $p_{\rm S}$  is obtained from this after averaging over all possible detection useful samples.
  • The worst-case error probability serves as an upper bound for  $p_{\rm S}$. 
$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\frac{\ddot{o}(T_{\rm D})}{ 2}= g_d(t=0) - |g_d(t=T)|- |g_d(t=-T)|-\hspace{0.01cm}\text{ ...}$$

Here,  $\ddot{o}(T_{\rm D})$  denotes the vertical eye opening. Let the detection time  $T_{\rm D} = 0$  be optimally chosen.




Notes:



Questions

1

What is the symbol duration?

$T \ = \ $

$\ {\rm ns}$

2

What is the rms value of the detection noise signal?

$\sigma_d\ = \ $

$\ {\rm V}$

3

What are the basic transmitter pulse values  $g_{\rm \nu} = g_d(\nu \cdot T)$, in particular

$g_0\ = \ $

$\ {\rm V}$
$g_1\ = \ $

$\ {\rm V}$
$g_2\ = \ $

$\ {\rm V}$

4

Calculate the eye opening and the worst-case error probability.

$\ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$
$p_{\rm U}\ = \ $

$\ \cdot 10^{\rm -3}$

5

Calculate the average error probability  $p_{\rm S}$  by averaging over the possible useful samples.

$p_{\rm S}\ = \ $

$\ \cdot 10^{\rm -3}$

6

What would be the minimum increase in transmitted pulse amplitude  $s_0$  required to satisfy the condition  $p_{\rm S} \ ≤ 10^{\rm -10}$? 

$s_0\ = \ $

$\ {\rm V}$


Solution

(1)  The symbol duration is the reciprocal of the bit rate:

$$T = \frac{1}{10^8\,{\rm bit/s}} = 10^{-8}\,{\rm s}\hspace{0.15cm}\underline { = 10\,{\rm ns}} \hspace{0.05cm}.$$


(2)  Integration according to the given equation leads to:

$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}}= \frac{10^{-9}\,{\rm V/Hz} \cdot 5 \cdot 10^{7}\,{\rm Hz} }{\sqrt{2}}\approx 0.035\,{\rm V^2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\sigma_d \hspace{0.15cm}\underline { = 0.188\,{\rm V}}\hspace{0.05cm}.$$


(3)  These values can be obtained from the graph:

$$g_0 = g_d(0)\hspace{0.15cm}\underline { = 0.790\,{\rm V}}, \hspace{0.2cm}g_1 = g_d(10\,{\rm ns}) \hspace{0.15cm}\underline {= 0.105\,{\rm V}}= g_{-1}, \hspace{0.2cm}g_2 = g_{-2} \hspace{0.15cm}\underline { \approx 0} \hspace{0.05cm}.$$


(4)  Using the basic pulse values calculated in (3), we obtain for the vertical eye opening:

$$\ddot{o}(T_{\rm D}) = 2 \cdot (g_0 - g_1 - g_{-1}) = 2 \cdot (0.790\,{\rm V} - 2\cdot 0.105\,{\rm V}) \hspace{0.15cm}\underline {= 1.16\,{\rm V}}\hspace{0.05cm}.$$
Eye diagram with and without noise

Thus, together with the noise rms value, we obtain for the worst-case error probability:

$$p_{\rm U} = {\rm Q} \left( \frac{1.16\,{\rm V}/2}{ 0.188\,{\rm V}} \right) \approx {\rm Q}(3.08)\hspace{0.15cm}\underline {\approx 10^{-3}} \hspace{0.05cm}.$$

The graph on the right shows the eye diagram without noise. One can see from this the vertical eye opening in the center of the symbol:

$$\ddot{o}(T_{\rm D} = 0) = 2 \cdot 0.58 \cdot s_0.$$


(5)  From the above eye diagram, one can see that the signal component at the detection time $T_{\rm D} = 0$ can assume six different values. In the upper half of the eye, these are:

$$1.)\hspace{0.2cm} g_0 + g_1 + g_{-1} = 0.790\,{\rm V} + 2\cdot 0.105\,{\rm V}= 1\,{\rm V} = s_0\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm 1} = {\rm Q} \left( \frac{1\,{\rm V}}{ 0.188\,{\rm V}} \right) \approx 5 \cdot 10^{-8} \hspace{0.05cm},$$
$$2.)\hspace{0.2cm} g_0 = 0.790\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm 2} = {\rm Q} \left( \frac{0.790\,{\rm V}}{ 0.188\,{\rm V}} \right) \approx 1.3 \cdot 10^{-5} \hspace{0.05cm},$$
$$3.)\hspace{0.2cm} g_0 - g_1 - g_{-1} = 0.580\,{\rm V} = \ddot{o}(T_{\rm D})/2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm 3} = p_{\rm U} \approx 10^{-3} \hspace{0.05cm}.$$

Averaging over these values with appropriate weighting  $(p_2$ occurs twice as often as $p_1$ and $p_3$ auf$)$  gives:

$$p_{\rm S} \ = \ {1}/{4} \cdot (p_{\rm 1} + 2 \cdot p_{\rm 2} + p_{\rm 3}) = {1}/{4} \cdot (5 \cdot 10^{-8} + 2 \cdot 1.3 \cdot 10^{-5} + 10^{-3}) \hspace{0.15cm}\underline { \approx 0.256 \cdot 10^{-3}} \hspace{0.05cm}.$$

Since $p_1$ and $p_2$ are much smaller than $p_3 = p_{\rm U}$, the average error probability is (almost) a factor of  $4$  smaller than  $p_{\rm U}$.


(6)  To reduce the error probability, $s_0$ must be increased. Thus, the approximation  $p_{\rm S} ≈ p_{\rm U}/4$  is even more accurate:

$$p_{\rm S} \le 10^{-10}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm U} = {\rm Q} \left( \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}} \right)\le 4 \cdot 10^{-10}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{0.58 \cdot s_0}{ 0.188\,{\rm V}} \ge 6.15 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_0 \ge 1.993\,{\rm V} \hspace{0.15cm}\underline { \approx 2\,{\rm V}} \hspace{0.05cm}.$$