Difference between revisions of "Aufgaben:Exercise 3.2Z: Optimum Cutoff Frequency for Gaussian Low-pass"

From LNTwww
m (Text replacement - "„" to """)
Line 1: Line 1:
{{quiz-Header|Buchseite=Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Ber%C3%BCcksichtigung_von_Impulsinterferenzen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference
 
}}
 
}}
  
[[File:P_ID1383__Dig_Z_3_2.png|right|frame|Augendiagramme &ndash;<br> ohne und mit Rauschen]]
+
[[File:P_ID1383__Dig_Z_3_2.png|right|frame|Eye diagrams &ndash;<br> without and with noise]]
Wie in &nbsp;[[Aufgaben:3.2_Augendiagramm_nach_Gaußtiefpass|Aufgabe 3.2]]&nbsp; wird ein binäres bipolares redundanzfreies Binärsystem mit gaußförmigen Empfangsfilter &nbsp;$H_{\rm G}(f)$&nbsp; betrachtet. Dessen Grenzfrequenz &nbsp;$f_{\rm G}$&nbsp; ist so zu bestimmen, dass das ungünstigste S/N&ndash;Verhältnis
+
As in &nbsp;[[Aufgaben:3.2_Augendiagramm_nach_Gaußtiefpass|Exercise 3.2]],&nbsp; a binary bipolar redundancy-free binary system with Gaussian receiver filter &nbsp;$H_{\rm G}(f)$&nbsp; is considered. Its cutoff frequency &nbsp;$f_{\rm G}$&nbsp; is to be determined such that the worst-case S/N ratio
 
:$$\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2 \big]^2}{ \sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2 \big]^2}{ \sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
   p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
   \right)$$
 
   \right)$$
  
maximal und damit die ungünsigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U}$&nbsp; minimal wird. Die so optimierte Grenzfrequenz &nbsp;$f_{\rm G, \ opt}$&nbsp; führt meist auch zur minimalen mittleren Symbolfehlerwahrscheinlichkeit &nbsp;$p_{\rm S, \ min}$.
+
becomes maximum and thus the worst-case error probability &nbsp;$p_{\rm U}$&nbsp; becomes minimum. The thus optimized cutoff frequency &nbsp;$f_{\rm G, \ opt}$&nbsp; usually also leads to the minimum mean symbol error probability &nbsp;$p_{\rm S, \ min}$.
  
In obiger Gleichung sind folgende Systemgrößen verwendet:
+
In the above equation, the following system quantities are used:
* $\sigma_d^2$&nbsp; ist die Detektionsrauschleistung. Bei gaußförmigen Empfangsfilter gilt:
+
* $\sigma_d^2$&nbsp; is the detection noise power. For Gaussian receiver filters holds:
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
 
|H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm
 
G}}{\sqrt{2}}\hspace{0.05cm}.$$
 
G}}{\sqrt{2}}\hspace{0.05cm}.$$
* $\ddot{o}(T_{\rm D})$&nbsp; gibt die Augenöffnung an. Der Detektionszeitpunkt wird stets zu &nbsp;$T_{\rm D} = 0$&nbsp; angenommen.
+
* $\ddot{o}(T_{\rm D})$&nbsp; indicates the eye opening. The detection time is always assumed to be &nbsp;$T_{\rm D} = 0$.&nbsp;  
* Bei einem gaußförmigen Empfangsfilter kann die vertikale Augenöffnung &nbsp;$\ddot{o}(T_{\rm D})$&nbsp; allein durch die Amplitude &nbsp;$s_0$&nbsp; des Sendegrundimpulses (obere Begrenzungslinie im Augendiagramm ohne Rauschen) und den Maximalwert &nbsp;$g_0$&nbsp; des Detektionsgrundimpulses ausgedrückt werden.  
+
* For a Gaussian receiver filter, the vertical eye opening &nbsp;$\ddot{o}(T_{\rm D})$&nbsp; can be expressed solely by the amplitude &nbsp;$s_0$&nbsp; of the basic transmission pulse (upper boundary line in the eye diagram without noise) and the maximum value &nbsp;$g_0$&nbsp; of the basic transmitter pulse.
*Die Impulsamplitude $g_0$ ist dabei wie folgt zu berechnen:
+
*The pulse amplitude $g_0$ is to be calculated as follows:
 
:$$g_0 = g_d(t = 0) = s_0 \cdot \big [1- 2 \cdot {\rm Q} \left(
 
:$$g_0 = g_d(t = 0) = s_0 \cdot \big [1- 2 \cdot {\rm Q} \left(
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
   \right)\big]\hspace{0.05cm}.$$
 
   \right)\big]\hspace{0.05cm}.$$
  
Die Grafik zeigt die Augendiagramme der gesuchten Konfiguration mit optimaler Grenzfrequenz.  
+
The graph shows the eye diagrams of the sought configuration with optimal cutoff frequency.  
*Im oberen Diagramm sind die Rauschstörungen nicht berücksichtigt.  
+
*In the upper diagram, the noise interferences are not considered.
*Das untere Diagramm gilt dagegen mit AWGN&ndash;Rauschen für &nbsp;$10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$.
+
*The lower diagram, on the other hand, is valid with AWGN noise for &nbsp;$10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$.
  
  
Line 31: Line 31:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen|Fehlerwahrscheinlichkeit unter Berücksichtigung von Impulsinterferenzen]].  
+
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference|Error Probability with Intersymbol Interference]].  
* Verwenden Sie zur numerischen Auswertung der Q&ndash;Funktion das Interaktionsmodul &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]].
+
* Use the interaction module &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]] for the numerical evaluation of the Q-function.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind für das Augendiagramm zutreffend?
+
{Which statements are true for the eye diagram?
 
|type="[]"}
 
|type="[]"}
+ Die Berechnung der Augenöffnung erfolgt ohne Rauschen.
+
+ The eye opening is calculated without noise.
- Bei gaußförmigem Empfangsfilter gilt &nbsp;$\ddot{o}(T_{\rm D})/2 = s_0 \ &ndash; \ g_0$.
+
- With Gaussian receiver filter, &nbsp;$\ddot{o}(T_{\rm D})/2 = s_0 \ &ndash; \ g_0$ is true.
+ Bei gaußförmigem Impulsformer gilt &nbsp;$\ddot{o}(T_{\rm D})/2 = 2 \cdot g_0 \ &ndash; \ s_0$.
+
+ With Gaussian pulse shaper, &nbsp;$\ddot{o}(T_{\rm D})/2 = 2 \cdot g_0 \ &ndash; \ s_0$ is true.
  
{Ab welcher Grenzfrequenz ergibt sich ein geschlossenes Auge?
+
{At what cutoff frequency does a closed eye result?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm G, \ min} \cdot T \ = \ $ { 0.27 3% }  
 
$f_{\rm G, \ min} \cdot T \ = \ $ { 0.27 3% }  
  
{Berechnen Sie das ungünstigste SNR für &nbsp;$10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$. Welche Werte ergeben sich für die nachgenannten Grenzfrequenzen?
+
{Calculate the worst-case SNR for &nbsp;$10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$. What are the values for the cutoff frequencies listed below?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.04 3% } $\ \rm dB$
 
$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.04 3% } $\ \rm dB$
Line 56: Line 56:
 
$f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.3 3% } $\ \rm dB$
 
$f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $ { 11.3 3% } $\ \rm dB$
  
{Welche Aussagen sind bezüglich der optimalen Grenzfrequenz zutreffend?
+
{Which statements are true regarding the optimal cutoff frequency?
 
|type="[]"}
 
|type="[]"}
+ Die Optimierung hinsichtlich &nbsp;$p_{\rm U}$&nbsp; $($bzw. &nbsp;$\rho_{\rm U})$&nbsp; ergibt $f_{\rm G, \ opt} \cdot T \approx 0.8$.
+
+ Optimization with respect to &nbsp;$p_{\rm U}$&nbsp; $($or &nbsp;$\rho_{\rm U})$&nbsp; yields $f_{\rm G, \ opt} \cdot T \approx 0.8$.
+ Dieses Optimierungsergebnis ist unabhängig von &nbsp;$E_{\rm B}/N_0$.
+
+ This optimization result is independent of &nbsp;$E_{\rm B}/N_0$.
- Die Optimierung hinsichtlich &nbsp;$p_{\rm S}$&nbsp; führt zum exakt gleichen Ergebnis.
+
- Optimization with respect to &nbsp;$p_{\rm S}$&nbsp; leads to exactly the same result.
  
{Bestimmen Sie für die optimale Grenzfrequenz &nbsp;$f_{\rm G, \ opt}$&nbsp; folgende Größen, wobei wieder &nbsp;$10 \cdot {\rm lg} \ (E_{\rm B}/N_0) = 10 \ \rm dB$&nbsp; gelten soll.
+
{Determine the following quantities for the optimal cutoff frequency &nbsp;$f_{\rm G, \ opt}$&nbsp; where again &nbsp;$10 \cdot {\rm lg} \ (E_{\rm B}/N_0) = 10 \ \rm dB$&nbsp; should hold.
 
|type="{}"}
 
|type="{}"}
 
$\ddot{o}(T_{\rm D})/s_0 \ = \ $ { 1.824 3% }  
 
$\ddot{o}(T_{\rm D})/s_0 \ = \ $ { 1.824 3% }  
Line 70: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind der <u>erste und der dritte Lösungsvorschlag</u>:
+
'''(1)'''&nbsp; The <u>first and third solutions</u> are correct:
*Bei der Berechnung der vertikalen Augenöffnung darf der Rauschanteil nicht berücksichtigt werden. Dieser wird durch den Rauscheffektivwert $\sigma_d$ erfasst.  
+
*When calculating the vertical eye opening, the noise component must not be taken into account. This is captured by the noise rms value $\sigma_d$.  
*Würde man die Augenöffnung aus dem unteren Augendiagramm entnehmen, so würde die Rauschkomponente zweimal erfasst.
+
*If the eye opening were taken from the lower eye diagram, the noise component would be captured twice.
*Die obere Begrenzung der inneren Augenlinie ergibt sich für die Symbolfolge " $\text{ ...} \, \ -\hspace{-0.1cm}1 \ -\hspace{-0.1cm}1, +1, -\hspace{-0.1cm}1, \ -\hspace{-0.1cm}1, \text{ ...}  $ " .  
+
*The upper boundary of the inner eye line results for the symbol sequence " $\text{ ...} \, \ -\hspace{-0.1cm}1 \ -\hspace{-0.1cm}1, +1, -\hspace{-0.1cm}1, \ -\hspace{-0.1cm}1, \text{ ...}  $ " .  
*Die lange "$-1$"&ndash;Folge würde zum Wert $-s_0$ führen.  
+
*The long "$-1$" sequence would lead to the value $-s_0$.  
*Dagegen führt die "worst&ndash;case"&ndash;Folge zur Augenlinie $-s_0 + 2 \cdot g_d(t)$.  
+
*In contrast, the "worst&ndash;case" sequence leads to the eye line $-s_0 + 2 \cdot g_d(t)$.  
*Zum Detektionszeitpunkt $T_{\rm D} = 0$ gilt somit mit der Entscheiderschwelle $E = 0$:
+
*Thus, at detection time $T_{\rm D} = 0$, with decision threshold $E = 0$:
 
:$${\ddot{o}(T_{\rm D})}/{ 2}= 2 \cdot g_0 - s_0
 
:$${\ddot{o}(T_{\rm D})}/{ 2}= 2 \cdot g_0 - s_0
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Für die halbe vertikale Augenöffnung gilt:
+
'''(2)'''&nbsp; For the half vertical eye opening holds:
 
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ 2 \cdot g_0 - s_0 = 2 \cdot s_0
 
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ 2 \cdot g_0 - s_0 = 2 \cdot s_0
 
   \cdot\left [ 1- 2 \cdot {\rm Q} \left(
 
   \cdot\left [ 1- 2 \cdot {\rm Q} \left(
Line 93: Line 93:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Ein geschlossenes Auge ergibt sich gemäß dem angegebenen Interaktionsmodul für
+
A closed eye results according to the given interaction module for
 
:$${\rm Q} \left(
 
:$${\rm Q} \left(
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
Line 102: Line 102:
  
  
'''(3)'''&nbsp; Mit den Gleichungen auf der Angabenseite und den bisherigen Berechnungen ergibt sich
+
'''(3)'''&nbsp; Using the equations on the information section and the previous calculations, we obtain
[[File:P_ID1395__Dig_Z_3_2_c.png|right|frame|$\rho_{\rm U}$ als Funktion der (normierten) Grenzfrequenz]]  
+
[[File:P_ID1395__Dig_Z_3_2_c.png|right|frame|$\rho_{\rm U}$ as a function of (normalized) cutoff frequency]]  
 
:$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2} =
 
:$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2} =
 
   \frac{s_0^2
 
   \frac{s_0^2
Line 110: Line 110:
 
   \right)\right]^2}{ N_0 \cdot f_{\rm G} / \sqrt{2}}$$
 
   \right)\right]^2}{ N_0 \cdot f_{\rm G} / \sqrt{2}}$$
  
Mit der Angabe $E_{\rm B}/N_0 = 10 \ \rm dB $ erhält man folgende Bestimmungsgleichung:
+
With the specification $E_{\rm B}/N_0 = 10 \ \rm dB $, the following determining equation is obtained:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}  {E_{\rm B}}/{ N_0} = 10 \, {\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}  {E_{\rm B}}/{ N_0} = 10 \, {\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   {E_{\rm B}}/{ N_0} = {s_0^2 \cdot T}/{ N_0} = 10$$
 
   {E_{\rm B}}/{ N_0} = {s_0^2 \cdot T}/{ N_0} = 10$$
Line 118: Line 118:
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
   \right)\right]^2}{  f_{\rm G} \cdot T}\hspace{0.05cm}.$$
 
   \right)\right]^2}{  f_{\rm G} \cdot T}\hspace{0.05cm}.$$
Die Abbildung zeigt diesen Funktionsverlauf in Abhängigkeit der (normierten) Grenzfrequenz. Für die vorgegebenen Grenzfrequenzen gilt:
+
The figure shows this function plot as a function of the (normalized) cutoff frequency. For the given cutoff frequencies holds:
 
* $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 12.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.04 \ \rm dB},$
 
* $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 12.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.04 \ \rm dB},$
 
* $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 14.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.66 \ \rm dB},$
 
* $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 14.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.66 \ \rm dB},$
 
* $f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 13.5 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.30 \ \rm dB}.$
 
* $f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 13.5 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.30 \ \rm dB}.$
  
Aus obiger Grafik erkennt man auch die minimale Grenzfrequenz &nbsp; &rArr; &nbsp; Teilaufgabe '''(2)'''.
+
From the above graph, one can also see the minimum cutoff frequency &nbsp; &rArr; &nbsp; subtask '''(2)'''.
  
  
'''(4)'''&nbsp; Richtig sind die <u>beiden ersten Lösungsvorschläge</u>:
+
'''(4)'''&nbsp; The <u>first two solutions</u> are correct:
*Die Gültigkeit der ersten Aussage ergibt sich aus obiger Grafik.  
+
*The validity of the first statement is evident from the above graph.
*Da in der obigen Gleichung für $\rho_{\rm U}$ das Verhältnis $E_{\rm B}/N_0$ nur als Faktor auftritt, führt die Optimierung (Nullsetzen der Ableitung) unabhängig von $E_{\rm B}/N_0$ stets zum gleichen Ergebnis.
+
*Since in the above equation for $\rho_{\rm U}$ the ratio $E_{\rm B}/N_0$ occurs only as a factor, the optimization (setting the derivative to zero) always leads to the same result independent of $E_{\rm B}/N_0$.
*Die optimale Grenzfrequenz hinsichtlich $p_{\rm U}$ ist näherungsweise auch hinsichtlich $p_{\rm S}$ optimal, aber nicht exakt.  
+
*The optimal cutoff frequency with respect to $p_{\rm U}$ is approximately optimal with respect to $p_{\rm S}$ as well, but not exactly.
*Für sehr große Werte von $E_{\rm B}/N_0$ (kleines Rauschen) stimmt diese Näherung sehr gut und es gilt $p_{\rm S} \ \approx \ p_{\rm U}/4$.  
+
*For very large values of $E_{\rm B}/N_0$ (small noise), this approximation is very correct and $p_{\rm S} \ \approx \ p_{\rm U}/4$ holds.  
*Dagegen ergibt sich bei großem Rauschen, beispielsweise $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 0 \ \rm dB$ eine kleinere optimale Grenzfrequenz, wenn die Optimierung auf $p_{\rm S}$ basiert:
+
*In contrast, for large noise, for example $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 0 \ \rm dB$, a smaller optimal cutoff frequency results when the optimization is based on $p_{\rm S}$:
 
:: $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} p_{\rm U} = 0.113, p_{\rm S} = 0.102,$
 
:: $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} p_{\rm U} = 0.113, p_{\rm S} = 0.102,$
 
:: $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} p_{\rm U} = 0.129, p_{\rm S} = 0.094.$
 
:: $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} p_{\rm U} = 0.129, p_{\rm S} = 0.094.$
*Die Fehlerwahrscheinlichkeiten sind dann aber so groß, dass diese Ergebnisse nicht praxisrelevant sind.  
+
*However, the error probabilities are then so large that these results are not practically relevant.
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis der Teilaufgabe '''(2)''' &nbsp; &rArr; &nbsp;  $E_{\rm B}/N_0 = 10$ und $f_{\rm G} \cdot T = 0.8$ gilt:
+
'''(5)'''&nbsp; With the result of subtask '''(2)''' &nbsp; &rArr; &nbsp;  $E_{\rm B}/N_0 = 10$ and $f_{\rm G} \cdot T = 0.8$ holds:
 
:$${\ddot{o}(T_{\rm D})}/{ s_0} = 2 \cdot \left [ 1- 4 \cdot {\rm Q} \left(
 
:$${\ddot{o}(T_{\rm D})}/{ s_0} = 2 \cdot \left [ 1- 4 \cdot {\rm Q} \left(
 
\sqrt{2\pi} \cdot 0.8 \right)\right] =  2 \cdot \left [ 1- 4
 
\sqrt{2\pi} \cdot 0.8 \right)\right] =  2 \cdot \left [ 1- 4

Revision as of 13:59, 26 April 2022

Eye diagrams –
without and with noise

As in  Exercise 3.2,  a binary bipolar redundancy-free binary system with Gaussian receiver filter  $H_{\rm G}(f)$  is considered. Its cutoff frequency  $f_{\rm G}$  is to be determined such that the worst-case S/N ratio

$$\rho_{\rm U} = \frac{\big[\ddot{o}(T_{\rm D})/2 \big]^2}{ \sigma_d^2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right)$$

becomes maximum and thus the worst-case error probability  $p_{\rm U}$  becomes minimum. The thus optimized cutoff frequency  $f_{\rm G, \ opt}$  usually also leads to the minimum mean symbol error probability  $p_{\rm S, \ min}$.

In the above equation, the following system quantities are used:

  • $\sigma_d^2$  is the detection noise power. For Gaussian receiver filters holds:
$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm G}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}}\hspace{0.05cm}.$$
  • $\ddot{o}(T_{\rm D})$  indicates the eye opening. The detection time is always assumed to be  $T_{\rm D} = 0$. 
  • For a Gaussian receiver filter, the vertical eye opening  $\ddot{o}(T_{\rm D})$  can be expressed solely by the amplitude  $s_0$  of the basic transmission pulse (upper boundary line in the eye diagram without noise) and the maximum value  $g_0$  of the basic transmitter pulse.
  • The pulse amplitude $g_0$ is to be calculated as follows:
$$g_0 = g_d(t = 0) = s_0 \cdot \big [1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\big]\hspace{0.05cm}.$$

The graph shows the eye diagrams of the sought configuration with optimal cutoff frequency.

  • In the upper diagram, the noise interferences are not considered.
  • The lower diagram, on the other hand, is valid with AWGN noise for  $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$.




Notes:



Questions

1

Which statements are true for the eye diagram?

The eye opening is calculated without noise.
With Gaussian receiver filter,  $\ddot{o}(T_{\rm D})/2 = s_0 \ – \ g_0$ is true.
With Gaussian pulse shaper,  $\ddot{o}(T_{\rm D})/2 = 2 \cdot g_0 \ – \ s_0$ is true.

2

At what cutoff frequency does a closed eye result?

$f_{\rm G, \ min} \cdot T \ = \ $

3

Calculate the worst-case SNR for  $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 10 \ \rm dB$. What are the values for the cutoff frequencies listed below?

$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$
$f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U}\ = \ $

$\ \rm dB$
$f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} 10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$

4

Which statements are true regarding the optimal cutoff frequency?

Optimization with respect to  $p_{\rm U}$  $($or  $\rho_{\rm U})$  yields $f_{\rm G, \ opt} \cdot T \approx 0.8$.
This optimization result is independent of  $E_{\rm B}/N_0$.
Optimization with respect to  $p_{\rm S}$  leads to exactly the same result.

5

Determine the following quantities for the optimal cutoff frequency  $f_{\rm G, \ opt}$  where again  $10 \cdot {\rm lg} \ (E_{\rm B}/N_0) = 10 \ \rm dB$  should hold.

$\ddot{o}(T_{\rm D})/s_0 \ = \ $

$\sigma_d/s_0 \ = \ $

$10 \cdot \rm lg \ \rho_{\rm U} \ = \ $

$\ \rm dB$
$p_{\rm U}\ = \ $

$\ \cdot 10^{\rm -5}$


Solution

(1)  The first and third solutions are correct:

  • When calculating the vertical eye opening, the noise component must not be taken into account. This is captured by the noise rms value $\sigma_d$.
  • If the eye opening were taken from the lower eye diagram, the noise component would be captured twice.
  • The upper boundary of the inner eye line results for the symbol sequence " $\text{ ...} \, \ -\hspace{-0.1cm}1 \ -\hspace{-0.1cm}1, +1, -\hspace{-0.1cm}1, \ -\hspace{-0.1cm}1, \text{ ...} $ " .
  • The long "$-1$" sequence would lead to the value $-s_0$.
  • In contrast, the "worst–case" sequence leads to the eye line $-s_0 + 2 \cdot g_d(t)$.
  • Thus, at detection time $T_{\rm D} = 0$, with decision threshold $E = 0$:
$${\ddot{o}(T_{\rm D})}/{ 2}= 2 \cdot g_0 - s_0 \hspace{0.05cm}.$$


(2)  For the half vertical eye opening holds:

$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ 2 \cdot g_0 - s_0 = 2 \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] - s_0 = s_0 \cdot\left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] \hspace{0.05cm}.$$

A closed eye results according to the given interaction module for

$${\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right) \ge 0.25 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sqrt{2\pi} \cdot f_{\rm G} \cdot T< 0.675\hspace{0.3cm}\Rightarrow \hspace{0.3cm} f_{\rm G, min} \cdot T \approx \frac{0.675}{2.5}\hspace{0.15cm}\underline { \approx 0.27} \hspace{0.05cm}.$$


(3)  Using the equations on the information section and the previous calculations, we obtain

$\rho_{\rm U}$ as a function of (normalized) cutoff frequency
$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2} = \frac{s_0^2 \cdot\left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]^2}{ N_0 \cdot f_{\rm G} / \sqrt{2}}$$

With the specification $E_{\rm B}/N_0 = 10 \ \rm dB $, the following determining equation is obtained:

$$10 \cdot {\rm lg}\hspace{0.1cm} {E_{\rm B}}/{ N_0} = 10 \, {\rm dB}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {E_{\rm B}}/{ N_0} = {s_0^2 \cdot T}/{ N_0} = 10$$
$$\Rightarrow \hspace{0.3cm} \rho_{\rm U} = 10 \cdot \sqrt{2} \cdot \frac{ \left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]^2}{ f_{\rm G} \cdot T}\hspace{0.05cm}.$$

The figure shows this function plot as a function of the (normalized) cutoff frequency. For the given cutoff frequencies holds:

  • $f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 12.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.04 \ \rm dB},$
  • $f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 14.7 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.66 \ \rm dB},$
  • $f_{\rm G} \cdot T = 1.0\text{:} \hspace{0.4cm} \rho_{\rm U} \approx 13.5 \Rightarrow 10 \cdot \rm lg \ \rho_{\rm U} \ \underline {\approx \ 11.30 \ \rm dB}.$

From the above graph, one can also see the minimum cutoff frequency   ⇒   subtask (2).


(4)  The first two solutions are correct:

  • The validity of the first statement is evident from the above graph.
  • Since in the above equation for $\rho_{\rm U}$ the ratio $E_{\rm B}/N_0$ occurs only as a factor, the optimization (setting the derivative to zero) always leads to the same result independent of $E_{\rm B}/N_0$.
  • The optimal cutoff frequency with respect to $p_{\rm U}$ is approximately optimal with respect to $p_{\rm S}$ as well, but not exactly.
  • For very large values of $E_{\rm B}/N_0$ (small noise), this approximation is very correct and $p_{\rm S} \ \approx \ p_{\rm U}/4$ holds.
  • In contrast, for large noise, for example $10 \cdot {\rm lg} \ E_{\rm B}/N_0 = 0 \ \rm dB$, a smaller optimal cutoff frequency results when the optimization is based on $p_{\rm S}$:
$f_{\rm G} \cdot T = 0.8\text{:} \hspace{0.4cm} p_{\rm U} = 0.113, p_{\rm S} = 0.102,$
$f_{\rm G} \cdot T = 0.6\text{:} \hspace{0.4cm} p_{\rm U} = 0.129, p_{\rm S} = 0.094.$
  • However, the error probabilities are then so large that these results are not practically relevant.


(5)  With the result of subtask (2)   ⇒   $E_{\rm B}/N_0 = 10$ and $f_{\rm G} \cdot T = 0.8$ holds:

$${\ddot{o}(T_{\rm D})}/{ s_0} = 2 \cdot \left [ 1- 4 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 0.8 \right)\right] = 2 \cdot \left [ 1- 4 \cdot 0.022\right]\hspace{0.15cm}\underline { = 1.824} \hspace{0.05cm},$$
$${\sigma_d^2}/{ s_0^2} = \frac{N_0 \cdot f_{\rm G} }{\sqrt{2}\cdot s_0^2}= \frac{N_0 }{s_0^2 \cdot T} \cdot \frac{f_{\rm G} \cdot T}{\sqrt{2}} = 0.1 \cdot \frac{0.8}{\sqrt{2}} \approx 0.0566 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\sigma_d}/{ s_0}\hspace{0.15cm}\underline { \approx 0.238} \hspace{0.05cm},$$
$$\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})]^2}{ 4 \cdot \sigma_d^2} = \frac{1.824^2}{ 4 \cdot 0.0566}\approx 14.7 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}\hspace{0.15cm}\underline {\approx 11.66\, {\rm dB}} \hspace{0.05cm}.$$
$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right) = {\rm Q} \left( \sqrt{14.7} \right) \hspace{0.15cm}\underline { \approx 6.4 \cdot 10^{-5}}\hspace{0.05cm}.$$