Difference between revisions of "Aufgaben:Exercise 3.2Z: Sinc-Squared Spectrum with Diracs"

From LNTwww
m (Text replacement - "Category:Exercises for Signal Representation" to "Category:Signal Representation: Exercises")
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID496__Sig_Z_3_2_neu.png|right|frame|$\rm si$-Quadrat-Spektrum mit Diracs]]
+
[[File:P_ID496__Sig_Z_3_2_neu.png|right|frame|$\rm sinc^2$– spectrum with Diracs]]
 
The sketched spectrum  ${X(f)}$  of a time signal  ${x(t)}$  is composed of
 
The sketched spectrum  ${X(f)}$  of a time signal  ${x(t)}$  is composed of
  
 
* a continuous component  $X_1(f)$,
 
* a continuous component  $X_1(f)$,
  
* plus three dirac-shaped spectral lines.
+
* plus three discrete spectral lines   ⇒    "Dirac functions".
  
  
The continuous component with  $f_0 = 200\, \text{kHz}$  and  $X_0 = 10^{–5} \text{ V/Hz}$is as follows:
+
The continuous component with  $f_0 = 200\, \text{kHz}$  and  $X_0 = 10^{–5} \text{ V/Hz}$ is as follows:
:$$X_1( f ) = X_0  \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$
+
:$$X_1( f ) = X_0  \cdot {\mathop{\rm sinc}\nolimits} ^2 ( {{f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm sinc}\nolimits} (x) = {\sin (\pi x)}/(\pi x).$$
The spectral line at  $f = 0$  has the weight  $–\hspace{-0.08cm}1\,\text{V}$. In addition, there are two lines at frequencies  $\pm f_0$, both with weight  $0.5\,\text{V}$.
+
*The spectral line at  $f = 0$  has the weight  $–\hspace{-0.08cm}1\,\text{V}$.  
 +
*In addition, there are two lines at frequencies  $\pm f_0$,  both with weight  $0.5\,\text{V}$.
  
  
Line 22: Line 23:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and Its Inverse]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and its Inverse]].
*Further information on this topic can be found in the learning video  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]].
+
*Further information on this topic can be found in the (German language) learning video  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]]   ⇒   "Continuous and discrete spectra".
 
   
 
   
*It can be assumed as known that a triangular pulse  $y(t)$  symmetrical about  $t = 0$  with the amplitude  ${A}$  and the absolute duration  $2T$  $($i.e.:  he signal values are unequal to $ 0 $ only between  $–T$  and  $+T$ )  has the following spectral function:
+
*It can be assumed as known:  A triangular pulse  $y(t)$  with amplitude  ${A}$,  the absolute duration  $2T$  and symmetrical about  $t = 0$  $($i.e.:  the signal values are  $\ne 0 $  only between  $–T$  and  $+T$ )  has the following spectral function:
:$$Y( f ) = A  \cdot T \cdot {\rm si}^2 ( \pi f T ).$$
+
:$$Y( f ) = A  \cdot T \cdot {\rm sinc}^2 ( f T ).$$
  
  
Line 32: Line 33:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What are the values of the parameters&nbsp; ${A}$&nbsp; (amplitude) and&nbsp; ${T}$&nbsp; (one-sided duration) of the triangular signal component&nbsp; $x_1(t)$?
+
{What are the values of the parameters&nbsp; ${A}$&nbsp; (maximum) and&nbsp; ${T}$&nbsp; (one-sided duration) of the triangular signal component&nbsp; $x_1(t)$?
 
|type="{}"}
 
|type="{}"}
 
$A\ = \ $ { 2 3% } &nbsp;$\text{V}$
 
$A\ = \ $ { 2 3% } &nbsp;$\text{V}$
Line 59: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Fläche des Dreieckimpulses]]
+
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Area of the triangular pulse]]
 
'''(1)'''&nbsp;  The one-sided duration of the symmetrical triangular pulse is&nbsp; $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm &micro; s}}$.  
 
'''(1)'''&nbsp;  The one-sided duration of the symmetrical triangular pulse is&nbsp; $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm &micro; s}}$.  
  
*The spectral value&nbsp; $X_0 = X_1(f = 0)$&nbsp; indicates the pulse area of&nbsp; $x_1(t)$&nbsp; an.  
+
*The spectral value&nbsp; $X_0 = X_1(f = 0)$&nbsp; indicates the pulse area of&nbsp; $x_1(t)$.  
 
*This is equal to&nbsp; ${A} \cdot {T}$.&nbsp; From this follows:
 
*This is equal to&nbsp; ${A} \cdot {T}$.&nbsp; From this follows:
 
:$$A = \frac{X_0 }{T}  = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
 
:$$A = \frac{X_0 }{T}  = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
  
  
'''(2)'''&nbsp;  The DC component is given by the Dirac weight at&nbsp; $f = 0$&nbsp;. One obtains&nbsp; ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.
+
'''(2)'''&nbsp;  The DC component is given by the Dirac weight at&nbsp; $f = 0$.&nbsp; One obtains&nbsp; ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.
  
  

Latest revision as of 15:11, 24 May 2021

$\rm sinc^2$– spectrum with Diracs

The sketched spectrum  ${X(f)}$  of a time signal  ${x(t)}$  is composed of

  • a continuous component  $X_1(f)$,
  • plus three discrete spectral lines   ⇒   "Dirac functions".


The continuous component with  $f_0 = 200\, \text{kHz}$  and  $X_0 = 10^{–5} \text{ V/Hz}$ is as follows:

$$X_1( f ) = X_0 \cdot {\mathop{\rm sinc}\nolimits} ^2 ( {{f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm sinc}\nolimits} (x) = {\sin (\pi x)}/(\pi x).$$
  • The spectral line at  $f = 0$  has the weight  $–\hspace{-0.08cm}1\,\text{V}$.
  • In addition, there are two lines at frequencies  $\pm f_0$,  both with weight  $0.5\,\text{V}$.




Hints:

  • It can be assumed as known:  A triangular pulse  $y(t)$  with amplitude  ${A}$,  the absolute duration  $2T$  and symmetrical about  $t = 0$  $($i.e.:  the signal values are  $\ne 0 $  only between  $–T$  and  $+T$ )  has the following spectral function:
$$Y( f ) = A \cdot T \cdot {\rm sinc}^2 ( f T ).$$


Question

1

What are the values of the parameters  ${A}$  (maximum) and  ${T}$  (one-sided duration) of the triangular signal component  $x_1(t)$?

$A\ = \ $

 $\text{V}$
$T\ = \ $

 $\text{$µ$s}$

2

What is the DC component  ${B}$  of the signal?

$B\ = \ $

 $\text{V}$

3

What is the amplitude  $C$  of the periodic component of  $x(t)$?

$C\ = \ $

 $\text{V}$

4

What are the maximum and minimum values of the signal  $x(t)$?

$x_\text{max}\ = \ $

 $\text{V}$
$x_\text{min}\hspace{0.2cm} = \ $

 $\text{V}$


Solution

Area of the triangular pulse

(1)  The one-sided duration of the symmetrical triangular pulse is  $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.

  • The spectral value  $X_0 = X_1(f = 0)$  indicates the pulse area of  $x_1(t)$.
  • This is equal to  ${A} \cdot {T}$.  From this follows:
$$A = \frac{X_0 }{T} = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$


(2)  The DC component is given by the Dirac weight at  $f = 0$.  One obtains  ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.


(3)  The two spectral lines at  $\pm f_0$  together give a cosine signal with amplitude  ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.


(4)  The maximum value occurs at time  ${t} = 0$    (here the triangular pulse and cosine signal are maximum):

$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$
  • The minimum values of  ${x(t)}$  result when the triangular pulse has decayed and the cosine function delivers the value  $–\hspace{-0.08 cm}1 \,\text{V}$ :
$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$