Difference between revisions of "Aufgaben:Exercise 3.3Z: High- and Low-Pass Filters in p-Form"

From LNTwww
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Laplace–Transformation und p–Übertragungsfunktion
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function
 
}}
 
}}
  
[[File:P_ID1767__LZI_Z_3_3.png|right|frame|Betrachtete Vierpolschaltungen]]
+
[[File:P_ID1767__LZI_Z_3_3.png|right|frame|Considered four-terminal networks]]
Die Grafik zeigt vier einfache Filterkonfigurationen mit Tiefpass– bzw. Hochpasscharakteristik, die sich aus diskreten Bauelementen zusammensetzen.  
+
The diagram shows four simple filter configurations with low-pass or high-pass characteristics,  which are composed of discrete components.  
  
Für die Bauelemente der Schaltungen 1 und 2 gelte:
+
The following holds for the components of the circuits  $(1)$  and  $(2)$:
:$$R = 100\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,{\rm \mu
+
:$$R = 100\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,{\rm µ
 
  H}\hspace{0.05cm}.$$
 
  H}\hspace{0.05cm}.$$
  
*Die Vierpol–Schaltungen (1), ... , (4) sollen durch ihre $p$–Übertragungsfunktionen $H_{\rm L}(p)$ charakterisiert werden.  
+
*The four-terminal networks  $(1)$, ... , $(4)$  should be characterized by their  $p$–transfer functions  $H_{\rm L}(p)$ .  
*Daraus ergibt sich (bei dieser Aufgabe, nicht allgemein) der Frequenzgang entsprechend der Gleichung
+
*From this   (in this task, not in general),   the frequency response is obtained according to the equation
 
:$$H(f) =  H_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
:$$H(f) =  H_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
  f}}
 
  f}}
Line 21: Line 21:
  
  
''Hinweise:''
+
Please note:  
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]].
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die $p$&ndash;Übertragungsfunktion eines Vierpols?
+
{Which statements are true for the &nbsp;$p$&ndash;transfer function of a two-port network?
 
|type="[]"}
 
|type="[]"}
+ Für einen Tiefpass  erster Ordnung gilt: &nbsp; $H_{\rm TP}(p) = K/(p + p_{\rm x})$,
+
+ The following holds for a low-pass filter of first-order: &nbsp; $H_{\rm TP}(p) = K/(p + p_{\rm x})$,
+ Für einen Hochpass erster Ordnung  gilt: &nbsp; $H_{\rm HP}(p) = K \cdot p/(p + p_{\rm x})$.
+
+ The following holds for a high-pass filter of first-order: &nbsp; $H_{\rm HP}(p) = K \cdot p/(p + p_{\rm x})$.
  
  
{Wie lauten die Parameter $K$ und $p_{\rm x}$ der Übertragungsfunktion von Vierpol '''(1)'''?
+
{What are the parameters &nbsp;$K$&nbsp; and &nbsp;$p_{\rm x}$&nbsp; of the transfer function of two-port network &nbsp;$(1)$?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 1 3% }
 
$K \ = \ $ { 1 3% }
Line 43: Line 43:
  
  
{Bei welcher Frequenz  $f_{\rm G}$ ist die Leistungsübertragungsfunktion $|H(f)|^2$ gegenüber dem Maximalwert auf die Hälfte abgesunken?
+
{At what frequency &nbsp;$f_{\rm G}$&nbsp; has the power transfer function &nbsp;$|H(f)|^2$&nbsp; decreased to half with respect to the maximum value?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm G} \ = \ $ { 1.59 3% } $\ \rm MHz$
 
$f_{\rm G} \ = \ $ { 1.59 3% } $\ \rm MHz$
  
  
{Welcher der beiden RC&ndash;Vierpole führt bei richtiger Wahl der Kapazität $C$ zur gleichen Übertragungsfunktion wie Vierpol '''(1)'''?
+
{Which of the two&nbsp; "RC two-port networks"&nbsp; results in the same transfer function as the two-port network&nbsp; $(1)$&nbsp; if the capacitance &nbsp;$C$&nbsp; is chosen correctly?
|type="[]"}
+
|type="()"}
+ Vierpol '''(3)''',
+
+ Two-port network &nbsp;$(3)$,
- Vierpol '''(4)'''.
+
- Two-port network &nbsp;$(4)$.
  
  
{Es gelte $R = 100 \ \rm \Omega$. Wie muss dabei  $C$ gewählt werden, damit der Pol $p_{\rm x}$ mit dem des Vierpols '''(1)''' übereinstimmt?
+
{Let &nbsp;$R = 100 \ \rm \Omega$ hold.&nbsp; How must &nbsp;$C$&nbsp; be chosen so that the pole &nbsp;$p_{\rm x}$&nbsp; coincides with that of the two-port network &nbsp;$(1)$?
 
|type="{}"}
 
|type="{}"}
 
$C \ = \ $  { 1 3% } $\ \rm nF$
 
$C \ = \ $  { 1 3% } $\ \rm nF$
Line 62: Line 62:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Für die beiden Vierpole gelten folgende Grenzwerte:
+
'''(1)'''&nbsp; <u>Both statements</u> are true:
$$\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} H_{\rm
+
*The following limits hold for the two two-port networks:
 +
:$$\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} H_{\rm
 
  TP}(p)\hspace{0.2cm} =  \hspace{0.1cm}\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{K}{p + p_{\rm x}} \hspace{0.15cm}  {
 
  TP}(p)\hspace{0.2cm} =  \hspace{0.1cm}\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{K}{p + p_{\rm x}} \hspace{0.15cm}  {
=K /{p_{\rm x}}}, \hspace{0.2cm}
+
=K /{p_{\rm x}}}, \hspace{1.2cm}
 
  \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  H_{\rm
 
  \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  H_{\rm
 
  TP}(p)= 0\hspace{0.05cm},$$
 
  TP}(p)= 0\hspace{0.05cm},$$
$$ \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}H_{\rm
+
:$$ \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}H_{\rm
  HP}(p) \hspace{0.2cm} =  \hspace{0.1cm}0, \hspace{0.4cm}
+
  HP}(p) \hspace{0.2cm} =  \hspace{0.1cm}0, \hspace{1.4cm}
 
  \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  H_{\rm
 
  \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  H_{\rm
 
  HP}(p)= \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}\frac{K\cdot p}{p + p_{\rm x}} = K  \hspace{0.05cm}.$$
 
  HP}(p)= \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}\frac{K\cdot p}{p + p_{\rm x}} = K  \hspace{0.05cm}.$$
Man erkennt, dass $H_{\rm TP}(p)$ für sehr hohe Frequenzen sperrt und $H_{\rm HP}(p)$ für sehr niedrige Frequenzen. Das bedeutet, dass <u>beide Aussagen</u> zutreffen.
+
*It can be seen that &nbsp;$H_{\rm TP}(p)$&nbsp; yields zero for very high frequencies and &nbsp;$H_{\rm HP}(p)$&nbsp; for very low frequencies.  
 +
 
 +
 
 +
 
  
'''(2)'''&nbsp; Wir betrachten den Vierpol '''(1)'''. Der Spannungsteiler liefert das Ergebnis
+
'''(2)'''&nbsp; We consider two-port network &nbsp;$(1)$.  
$$H_{\rm L}(p)=  \frac { p  L}
+
*The voltage divider principle leads to the result
 +
:$$H_{\rm L}(p)=  \frac { p  L}
 
  {R + pL}=  \frac { p  }
 
  {R + pL}=  \frac { p  }
 
  {p +{R}/{L}}
 
  {p +{R}/{L}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Es handelt sich um einen <u>Hochpass</u> mit dem Kennparameter $\underline {K = 1}$ und der Nullstelle  bei
+
*It is a &nbsp;$\rm high&ndash;pass\:filter$&nbsp; with the characteristic parameter &nbsp;$\underline {K = 1}$&nbsp; and the zero at
$$p_{\rm x}= -\frac{R}{L}=  -\frac{100\,{\rm \Omega}}{10^{-5 }\,{\rm \Omega
+
:$$p_{\rm x}= -\frac{R}{L}=  -\frac{100\,{\rm \Omega}}{10^{-5 }\,{\rm \Omega
 
  s}}\hspace{0.15cm}\underline{= -0.1} \cdot10^{-6 }\,{1}/{\rm  s}
 
  s}}\hspace{0.15cm}\underline{= -0.1} \cdot10^{-6 }\,{1}/{\rm  s}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
'''(3)'''&nbsp; Zur Übertragungsfunktion kommt man mit der Substitution $p = {\rm j} \cdot 2 \pi f$:
+
 
$$H(f)=    \frac { {\rm j} \cdot 2\pi \hspace{-0.05cm}f  }
+
 
  {{\rm j} \cdot 2\pi \hspace{-0.05cm}f +p_{\rm o}}\Rightarrow \hspace{0.3cm}\hspace{0.3cm}
+
 
 +
'''(3)'''&nbsp; The transfer function is obtained by using the substitution &nbsp;$p = {\rm j} \cdot 2 \pi f$:
 +
:$$H(f)=    \frac { {\rm j} \cdot 2\pi \hspace{-0.05cm}f  }
 +
  {{\rm j} \cdot 2\pi \hspace{-0.05cm}f +p_{\rm x}}\Rightarrow \hspace{0.3cm}\hspace{0.3cm}
 
  |H(f)|^2 =    \frac { (2\pi \hspace{-0.05cm}f)^2  }
 
  |H(f)|^2 =    \frac { (2\pi \hspace{-0.05cm}f)^2  }
  {(2\pi \hspace{-0.05cm}f)^2 +p_{\rm o}^2}\hspace{0.05cm} .$$
+
  {(2\pi \hspace{-0.05cm}f)^2 +p_{\rm x}^2}\hspace{0.05cm} .$$
Aus der Bedingung |$|H(f_{\rm G})|^2 = 0.5 $ erhält man die Bedingung:
+
*The following conditional equation is obtained from the condition &nbsp;$|H(f_{\rm G})|^2 = 0.5 $&nbsp;:
$$(2\pi \hspace{-0.05cm}f_{\rm G})^2 = p_{\rm o}^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.3cm}
+
:$$(2\pi \hspace{-0.05cm}f_{\rm G})^2 = p_{\rm x}^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.3cm}
  f_{\rm G} =    -\frac { p_{\rm o}} {2 \pi}= \frac { 10^{-7 }\, 1/s} {2 \pi}\hspace{0.15cm}\underline{\approx 1.59\,{\rm MHz}}\hspace{0.05cm} .$$
+
  f_{\rm G} =    -\frac { p_{\rm x}} {2 \pi}= \frac { 10^{-7 }\, 1/s} {2 \pi}\hspace{0.15cm}\underline{\approx 1.59\,{\rm MHz}}\hspace{0.05cm} .$$
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The <u>first statement</u> is correct:
 +
*For a direct&nbsp; $\rm (DC)$&nbsp; signal,&nbsp; a capacitance &nbsp;$C$&nbsp; is an infinite resistance.&nbsp; For high frequencies, &nbsp;$C$&nbsp; acts like a short circuit.
 +
*From this it follows:&nbsp; The two-port network &nbsp;$(3)$&nbsp; also describes a high-pass filter.&nbsp; In contrast, the circuits &nbsp;$(2)$&nbsp; and &nbsp;$(4)$&nbsp; exhibit low-pass filter behaviour.
 +
 
  
'''(4)'''&nbsp; Für ein Gleichsignal ist eine Kapazität $C$ ein unendlich großer Widerstand, für hohe Frequenzen wirkt $C$ wie ein Kurzschluss &nbsp; &#8658; &nbsp; der <u>Vierpol '''(3)'''</u> beschreibt ebenfalls einen Hochpass. Dagegen zeigen die Schaltungen 2 und 4 Tiefpassverhalten.
 
  
  
'''(5)'''&nbsp; Die $p$&ndash;Übertragungsfunktion von Vierpol '''(3)''' lautet:
+
'''(5)'''&nbsp; The $p$&ndash;transfer function of two-port network &nbsp;$(3)$&nbsp; is:
$$H_{\rm L}(p)=  \frac { R  }
+
:$$H_{\rm L}(p)=  \frac { R  }
 
  {{1}/{(pC)} + R}=  \frac { p  }
 
  {{1}/{(pC)} + R}=  \frac { p  }
  {p +{1}/{(RC)}}$$
+
  {p +{1}/{(RC)}}\hspace{0.3cm}
$$\Rightarrow \hspace{0.3cm}p_{\rm x}= -{1}/(RC)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
\Rightarrow \hspace{0.3cm}p_{\rm x}= -{1}/(RC)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  C = -\frac{1}{p_{\rm x} \cdot R}=  \frac{-1}{-10^{-7 }\, 1/s  \cdot 100\,{\rm \Omega}}\hspace{0.15cm}\underline{ = 1\,{\rm  nF}}
 
  C = -\frac{1}{p_{\rm x} \cdot R}=  \frac{-1}{-10^{-7 }\, 1/s  \cdot 100\,{\rm \Omega}}\hspace{0.15cm}\underline{ = 1\,{\rm  nF}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Line 109: Line 124:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^3.2 Laplace–Transformation und p–Übertragungsfunktion^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^3.2 Laplace Transform and p-Transfer Function^]]

Latest revision as of 16:15, 14 October 2021

Considered four-terminal networks

The diagram shows four simple filter configurations with low-pass or high-pass characteristics,  which are composed of discrete components.

The following holds for the components of the circuits  $(1)$  and  $(2)$:

$$R = 100\,{\rm \Omega}\hspace{0.05cm},\hspace{0.2cm} L = 10\,{\rm µ H}\hspace{0.05cm}.$$
  • The four-terminal networks  $(1)$, ... , $(4)$  should be characterized by their  $p$–transfer functions  $H_{\rm L}(p)$ .
  • From this   (in this task, not in general),   the frequency response is obtained according to the equation
$$H(f) = H_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} \hspace{0.05cm}.$$




Please note:



Questions

1

Which statements are true for the  $p$–transfer function of a two-port network?

The following holds for a low-pass filter of first-order:   $H_{\rm TP}(p) = K/(p + p_{\rm x})$,
The following holds for a high-pass filter of first-order:   $H_{\rm HP}(p) = K \cdot p/(p + p_{\rm x})$.

2

What are the parameters  $K$  and  $p_{\rm x}$  of the transfer function of two-port network  $(1)$?

$K \ = \ $

$p_{\rm x}\ = \ $

$\ \cdot 10^{-6}\ \rm 1/s$

3

At what frequency  $f_{\rm G}$  has the power transfer function  $|H(f)|^2$  decreased to half with respect to the maximum value?

$f_{\rm G} \ = \ $

$\ \rm MHz$

4

Which of the two  "RC two-port networks"  results in the same transfer function as the two-port network  $(1)$  if the capacitance  $C$  is chosen correctly?

Two-port network  $(3)$,
Two-port network  $(4)$.

5

Let  $R = 100 \ \rm \Omega$ hold.  How must  $C$  be chosen so that the pole  $p_{\rm x}$  coincides with that of the two-port network  $(1)$?

$C \ = \ $

$\ \rm nF$


Solution

(1)  Both statements are true:

  • The following limits hold for the two two-port networks:
$$\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} H_{\rm TP}(p)\hspace{0.2cm} = \hspace{0.1cm}\lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}\frac{K}{p + p_{\rm x}} \hspace{0.15cm} { =K /{p_{\rm x}}}, \hspace{1.2cm} \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} H_{\rm TP}(p)= 0\hspace{0.05cm},$$
$$ \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}0}H_{\rm HP}(p) \hspace{0.2cm} = \hspace{0.1cm}0, \hspace{1.4cm} \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} H_{\rm HP}(p)= \lim_{p \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}\frac{K\cdot p}{p + p_{\rm x}} = K \hspace{0.05cm}.$$
  • It can be seen that  $H_{\rm TP}(p)$  yields zero for very high frequencies and  $H_{\rm HP}(p)$  for very low frequencies.



(2)  We consider two-port network  $(1)$.

  • The voltage divider principle leads to the result
$$H_{\rm L}(p)= \frac { p L} {R + pL}= \frac { p } {p +{R}/{L}} \hspace{0.05cm} .$$
  • It is a  $\rm high–pass\:filter$  with the characteristic parameter  $\underline {K = 1}$  and the zero at
$$p_{\rm x}= -\frac{R}{L}= -\frac{100\,{\rm \Omega}}{10^{-5 }\,{\rm \Omega s}}\hspace{0.15cm}\underline{= -0.1} \cdot10^{-6 }\,{1}/{\rm s} \hspace{0.05cm} .$$



(3)  The transfer function is obtained by using the substitution  $p = {\rm j} \cdot 2 \pi f$:

$$H(f)= \frac { {\rm j} \cdot 2\pi \hspace{-0.05cm}f } {{\rm j} \cdot 2\pi \hspace{-0.05cm}f +p_{\rm x}}\Rightarrow \hspace{0.3cm}\hspace{0.3cm} |H(f)|^2 = \frac { (2\pi \hspace{-0.05cm}f)^2 } {(2\pi \hspace{-0.05cm}f)^2 +p_{\rm x}^2}\hspace{0.05cm} .$$
  • The following conditional equation is obtained from the condition  $|H(f_{\rm G})|^2 = 0.5 $ :
$$(2\pi \hspace{-0.05cm}f_{\rm G})^2 = p_{\rm x}^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.3cm} f_{\rm G} = -\frac { p_{\rm x}} {2 \pi}= \frac { 10^{-7 }\, 1/s} {2 \pi}\hspace{0.15cm}\underline{\approx 1.59\,{\rm MHz}}\hspace{0.05cm} .$$



(4)  The first statement is correct:

  • For a direct  $\rm (DC)$  signal,  a capacitance  $C$  is an infinite resistance.  For high frequencies,  $C$  acts like a short circuit.
  • From this it follows:  The two-port network  $(3)$  also describes a high-pass filter.  In contrast, the circuits  $(2)$  and  $(4)$  exhibit low-pass filter behaviour.



(5)  The $p$–transfer function of two-port network  $(3)$  is:

$$H_{\rm L}(p)= \frac { R } {{1}/{(pC)} + R}= \frac { p } {p +{1}/{(RC)}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm x}= -{1}/(RC)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} C = -\frac{1}{p_{\rm x} \cdot R}= \frac{-1}{-10^{-7 }\, 1/s \cdot 100\,{\rm \Omega}}\hspace{0.15cm}\underline{ = 1\,{\rm nF}} \hspace{0.05cm} .$$