Difference between revisions of "Aufgaben:Exercise 3.3Z: Moments for Triangular PDF"

From LNTwww
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Erwartungswerte und Momente
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Expected_Values_and_Moments
 
}}
 
}}
  
[[File:P_ID142__Sto_Z_3_3.png|right|]]
+
[[File:P_ID142__Sto_Z_3_3.png|right|frame|Two triangular PDFs]]
:Wir betrachten in dieser Aufgabe zwei Zufallssignale $x(t)$ und $y(t)$ mit jeweils dreieckförmiger WDF, nämlich die
+
We consider in this exercise two random signals  $x(t)$  and  $y(t)$  each with triangular PDF,  namely
  
:*einseitige Dreieck-WDF (siehe obere Grafik):
+
* the one-sided triangular PDF according to the upper graph:
:$$\it f_x(x)=\left\{ \begin{array}{*{4}{c}}  0.5 \cdot (\rm 1-{\it x}/{\rm 4}) & \rm f\ddot{u}r\hspace{0.1cm}{\rm 0 \le \it x \le \rm 4},\\\rm 0 & \rm sonst. \end{array} \right.$$
+
:$$f_x(x)=\left\{ \begin{array}{*{4}{c}}  0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$
  
:*zweiseitige Dreieck-WDF (siehe untere Grafik):
+
* the two-sided triangular PDF according to the graph below:
:$$\it f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (\rm 1-{\it |y|}/{\rm 4}) & \rm f\ddot{u}r\hspace{0.1cm}{\rm -4 \le \it y \le \rm 4},\\\rm 0 & \rm sonst. \end{array} \right.$$
+
:$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y\le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$
  
:Berücksichtigen Sie zur Lösung dieser Aufgabe die Gleichung für die Zentralmomente:
+
To solve this problem,  consider the equation for the central moments:
 
:$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$
 
:$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$
  
:Im Einzelnen ergeben sich hierfür
+
Specifically,  this equation yields the following results:
:$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1}+\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
+
:$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
:$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}+\rm 6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$
+
:$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$
  
:Aus den Zentralmomenten höherer Ordnung kann man unter anderem ableiten:
+
From the central moments of higher order one can derive among others:
  
:*die <i>Charliersche Schiefe</i>:
+
*the&nbsp; "Charlier's skewness"&nbsp; $S = {\mu_3}/{\sigma^3}\hspace{0.05cm},$
:$$S = \frac {\mu_3}{\sigma^3}\hspace{0.05cm},$$
 
  
:*die <i>Kurtosis K</i>:
+
*the&nbsp; "kurtosis"&nbsp; $K = {\mu_4}/{\sigma^4}\hspace{0.05cm}.$
:$$K = \frac {\mu_4}{\sigma^4}\hspace{0.05cm}.$$
 
  
:<b>Hinweis</b>: Die Aufgabe bezieht sich auf den gesamten Lehrstoff von Kapitel 3.3.
 
  
  
===Fragebogen===
+
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
 +
*Reference is made to the section&nbsp; [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|Some common central moments]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{ Berechnen Sie aus der vorliegenden WDF <i>f<sub>x</sub></i>(<i>x</i>) das Moment <i>k</i>-ter Ordnung (<i>m<sub>k</sub></i>). Welcher Wert ergibt sich f&uuml;r den linearen Mittelwert  <i>m<sub>x</sub></i> = <i>m</i><sub>1</sub>?
+
{Calculate from the present PDF&nbsp; $f_x(x)$&nbsp; the&nbsp; $k$-th order moment.&nbsp; What value results for the linear mean&nbsp; $m_x = m_1$?
 
|type="{}"}
 
|type="{}"}
$m_x$ = { 1.333 3% }
+
$m_x \ = \ $ { 1.333 3% }
  
  
{Wie gro&szlig; sind der quadratische Mittelwert und die Streuung <i>&sigma;<sub>x</sub></i>?
+
{What is the second moment and the rms&nbsp; $\sigma_x$&nbsp; of the random variable&nbsp; $x$?
 
|type="{}"}
 
|type="{}"}
$\sigma_x$ = { 0.943 3% }
+
$\sigma_x\ = \ $ { 0.943 3% }
  
  
{Wie groß ist bei der Zufallsgr&ouml;&szlig;e <i>x</i> die Charliersche Schiefe <i>S<sub>x</sub></i> = <i>&mu;</i><sub>3</sub>/<i>&sigma;</i><sup>3</sup>? Warum ist dieser Wert ungleich 0?
+
{For random variable&nbsp; $x$:&nbsp; What is the Charlier's skewness&nbsp; $S_x = \mu_3/\sigma_x^3$?&nbsp; Why is&nbsp; $S_x \ne 0$?
 
|type="{}"}
 
|type="{}"}
$S_x$ = { 0.566 3% }
+
$S_x \ = \ $ { 0.566 3% }
  
  
{Welche Aussagen treffen f&uuml;r die symmetrisch verteilte Zufallsgr&ouml;&szlig;e <i>y</i> zu?
+
{Which statements are true for the symmetrically distributed random variable&nbsp; $y$?
 
|type="[]"}
 
|type="[]"}
+ Alle Momente <i>m<sub>k</sub></i> mit ungeradzahligem <i>k</i> sind 0.
+
+ All moments with odd&nbsp; $k$&nbsp; are&nbsp; $m_k =0$.
- Alle Momente <i>m<sub>k</sub></i> mit geradzahligem <i>k</i> sind 0.
+
- All moments with even&nbsp; $k$&nbsp; are&nbsp; $m_k =0$.
+ Alle Momente <i>m<sub>k</sub></i> mit geradem <i>k</i> sind wie in 1. berechnet.
+
+ All moments&nbsp; $m_k$&nbsp; with even&nbsp; $k$&nbsp; are calculated as in subtask&nbsp; '''(1)'''.
+ Die Zentralmomente <i>&mu;<sub>k</sub></i> sind gleich den Momenten <i>m<sub>k</sub></i>.
+
+ The central moments &nbsp; $\mu_k$&nbsp; are equal to the non-centered moments&nbsp; $m_k$.
  
  
{Berechnen Sie die Streuung der Zufallsgr&ouml;&szlig;e <i>y</i>.
+
{Calculate the standard deviation of the random variable&nbsp; $y$.
 
|type="{}"}
 
|type="{}"}
$\sigma_y$ = { 1.633 3% }
+
$\sigma_y \ = \ $ { 1.633 3% }
  
  
{Welcher Wert ergibt sich f&uuml;r die Kurtosis <i>K<sub>y</sub></i> der Zufallsgr&ouml;&szlig;e <i>y</i>? Interpretieren Sie das Ergebnis.
+
{What is the kurtosis&nbsp; $K_y$&nbsp; of the random variable&nbsp; $y$?&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$K_y$ = { 2.4 3% }
+
$K_y \ = \ $ { 2.4 3% }
  
  
Line 69: Line 74:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;F&uuml;r das Moment <i>k</i>-ter Ordnung gilt nach den Gleichungen von Kapitel 3.3:
+
'''(1)'''&nbsp; For the&nbsp; $k$&ndash;th order moment of the random variable&nbsp; $x$&nbsp; holds:
:$$m_k=\rm \frac{\rm 1} {\rm 2}\cdot \int_{\rm 0}^{\rm 4}\it x^k\cdot (\rm 1-\frac{\it x}{\rm 4})\it \hspace{0.1cm}{\rm d}x.$$
+
:$$m_k=1/2\cdot \int_{\rm 0}^{\rm 4} x^k\cdot ( 1-\frac{\it x}{\rm 4}) \hspace{0.1cm}{\rm d}x.$$
  
:Dies f&uuml;hrt zu dem Ergebnis:
+
*This leads to the result:
:$$m_k=\frac{x^{\it k+\rm 1}}{\rm 2\cdot (\it k+\rm 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{\it k+\rm 2}}{\rm 8\cdot (\it k+\rm 2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k+\rm 1)\cdot (\it k+\rm 2)}.$$
+
:$$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$
  
:Daraus erh&auml;lt man f&uuml;r den linearen Mittelwert (<i>k</i> = 1):
+
*From this we obtain for the linear mean&nbsp; $(k= 1)$:
 
:$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$
 
:$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$
  
:<b>2.</b>&nbsp;&nbsp;Der quadratische Mittelwert (<i>k</i> = 2) betr&auml;gt <i>m</i><sub>2</sub> = 8/3. Daraus folgt mit dem <i>Satz von Steiner</i>:
 
:$$\sigma_x^{\rm 2}=\rm\frac{8}{3}-\Bigg(\frac{4}{3}\Bigg)^2=\rm \frac{8}{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\it \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$
 
  
:<b>3.</b>&nbsp;&nbsp;Mit <i>m</i><sub>1</sub> = 4/3, <i>m</i><sub>2</sub> = 8/3 und <i>m</i><sub>3</sub> = 32/5 erh&auml;lt man mit der angegebenen Gleichung für das Zentralmoment dritter Ordnung: <i>&mu;</i><sub>3</sub> = 64/135 &asymp; 0.474. Daraus folgt f&uuml;r die <i>Charliersche Schiefe</i>:
+
 
 +
'''(2)'''&nbsp; The&nbsp; $(k= 2)$&nbsp; is&nbsp; $m_2 = 8/3$.
 +
*From this follows with&nbsp; "Steiner's theorem":
 +
:$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; With &nbsp;$m_1 = 4/3$, &nbsp;$m_2 = 8/3$&nbsp; and &nbsp;$m_3 = 32/5$,&nbsp; the given equation for the third order central moment gives: &nbsp; $\mu_3 = 64/135 \approx 0.474$.  
 +
*From this follows for the&nbsp; "Charlier's skewness":
 
:$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
 
:$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
 +
*Due to the asymmetric PDF:&nbsp; $S_x \ne 0$.
 +
 +
 +
  
:Aufgrund der unsymmetrischen WDF ist <i>S<sub>x</sub></i> &ne; 0.
+
'''(4)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1, 3 and 4</u>:
 +
*For symmetric PDF,&nbsp; all odd moments are zero,&nbsp; including the mean&nbsp; $m_y$.
 +
*Therefore,&nbsp; according&nbsp; $y$:&nbsp; There is no difference between the moments&nbsp; $m_k$&nbsp; and the central moments&nbsp; $\mu_k$.
 +
*The moments&nbsp; $m_k$&nbsp; with even&nbsp; $k$&nbsp; are the same for the random variables&nbsp; $x$&nbsp; and&nbsp; $y$.&nbsp; This is evident from the time averages:
 +
*Since&nbsp; $x^2(t) = y^2(t)$,&nbsp; for&nbsp; $k = 2n$&nbsp; the moments are equal too:
 +
:$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$
  
:<b>4.</b>&nbsp;&nbsp;Bei symmetrischer WDF sind alle ungeraden Momente 0, unter anderem auch der Mittelwert <i>m<sub>y</sub></i>. Deshalb gibt es hinsichtlich der Zufallsgröße <i>y</i> keinen Unterschied zwischen den Momenten <i>m<sub>k</sub></i> und den Zentralmomenten <i>&mu;<sub>k</sub></i>.
 
  
:Die Momente <i>m<sub>k</sub></i> mit geradzahligem <i>k</i> sind f&uuml;r die Zufallsgr&ouml;&szlig;en <i>x</i> und <i>y</i> gleich. Offensichtlich wird dies an den Zeitmittelwerten. Da <i>x</i>&sup2;(<i>t</i>) = <i>y</i>&sup2;(<i>t</i>) ist, sind f&uuml;r <i>k</i> = 2<i>n</i> auch die Momente gleich:
 
:$$m_k=m_{2 n}=...\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=...\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$
 
  
:Richtig sind somit <u>die Lösungsvorschläge 1, 3 und 4</u>.
+
'''(5)'''&nbsp; With the result of the subtask&nbsp; '''(2)'''&nbsp; holds:
 +
:$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$
  
:<b>5.</b>&nbsp;&nbsp;Mit dem Ergebnis aus b) gilt:
 
:$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm \frac{8}{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$
 
  
:<b>6.</b>&nbsp;&nbsp;Das Zentralmoment vierter Ordnung ist bei symmetrischer WDF gleich dem Moment <i>m</i><sub>4</sub>. Aus der im Punkt a) berechneten allgemeinen Gleichung erh&auml;lt man
+
'''(6)'''&nbsp;  For symmetrical PDF,&nbsp; the fourth-order central moment is equal to the moment&nbsp; $m_4$.  
<i>&mu;</i><sub>4</sub> = 256/15. Daraus folgt f&uuml;r die Kurtosis:
+
*From the general equation calculated in subtask&nbsp; '''(1)'''&nbsp; one obtains&nbsp; $\mu_4 = 256/15.$
 +
*From this follows for the kurtosis:
 
:$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
 
:$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
  
:Dieser Zahlenwert gilt f&uuml;r die Dreieck-WDF allgemein und liegt zwischen den Kurtosiswerten von Gleichverteilung (<i>K</i> = 1.8) und Gau&szlig;verteilung (<i>K</i> = 3). Dies ist eine qualitative Bewertung der Tatsache, dass hier die Ausl&auml;ufer ausgepr&auml;gter sind als bei einer gleichverteilten Zufallsgr&ouml;&szlig;e, aber aufgrund der Begrenzung weniger stark als bei Gau&szlig;schen Gr&ouml;&szlig;en.
+
::<u>Note:</u> &nbsp; This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution&nbsp; $(K = 1.8)$&nbsp; and the Gaussian distribution&nbsp; $(K = 3)$. This is a quantitative evaluation of the fact that here
 +
::*the outliers are more pronounced than in the case of a uniformly distributed random size,  
 +
::*but due to the limitation less pronounced than with Gaussian sizes.
  
:Anschließend soll noch nachgewiesen werden, dass auch die unsymmetrische Dreieck-WDF <i>f<sub>x</sub></i>(<i>x</i>) entsprechend der oberen Skizze auf dem Angabenblatt die gleiche Kurtosis besitzt:
+
*Then we will prove that the asymmetric triangular PDF&nbsp; $f_x(x)$&nbsp; has the same kurtosis as shown in the upper sketch on the data sheet:
:$$\mu_{\rm 4} = \it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}+\rm 6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}= \\ = \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
+
: $$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
  
:Mit dem Ergebnis der Teilaufgabe (c) &nbsp;&#8658;&nbsp; <i>&sigma;<sub>x</sub></i><sup>2</sup> = 8/9 folgt daraus:
+
*With the result of the subtask&nbsp; '''(3)'''&nbsp; &nbsp; &#8658; &nbsp; $\sigma_x^2 = 8/9$&nbsp; it follows:
:$$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$  
+
:$$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$  
  
  
Line 115: Line 134:
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^3.3 Erwartungswerte und Momente^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^3.3 Expected Values and Moments^]]

Latest revision as of 14:19, 18 January 2023

Two triangular PDFs

We consider in this exercise two random signals  $x(t)$  and  $y(t)$  each with triangular PDF,  namely

  • the one-sided triangular PDF according to the upper graph:
$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$
  • the two-sided triangular PDF according to the graph below:
$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y} \le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$

To solve this problem,  consider the equation for the central moments:

$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$

Specifically,  this equation yields the following results:

$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$

From the central moments of higher order one can derive among others:

  • the  "Charlier's skewness"  $S = {\mu_3}/{\sigma^3}\hspace{0.05cm},$
  • the  "kurtosis"  $K = {\mu_4}/{\sigma^4}\hspace{0.05cm}.$



Hints:



Questions

1

Calculate from the present PDF  $f_x(x)$  the  $k$-th order moment.  What value results for the linear mean  $m_x = m_1$?

$m_x \ = \ $

2

What is the second moment and the rms  $\sigma_x$  of the random variable  $x$?

$\sigma_x\ = \ $

3

For random variable  $x$:  What is the Charlier's skewness  $S_x = \mu_3/\sigma_x^3$?  Why is  $S_x \ne 0$?

$S_x \ = \ $

4

Which statements are true for the symmetrically distributed random variable  $y$?

All moments with odd  $k$  are  $m_k =0$.
All moments with even  $k$  are  $m_k =0$.
All moments  $m_k$  with even  $k$  are calculated as in subtask  (1).
The central moments   $\mu_k$  are equal to the non-centered moments  $m_k$.

5

Calculate the standard deviation of the random variable  $y$.

$\sigma_y \ = \ $

6

What is the kurtosis  $K_y$  of the random variable  $y$?  Interpret the result.

$K_y \ = \ $


Solution

(1)  For the  $k$–th order moment of the random variable  $x$  holds:

$$m_k=1/2\cdot \int_{\rm 0}^{\rm 4} x^k\cdot ( 1-\frac{\it x}{\rm 4}) \hspace{0.1cm}{\rm d}x.$$
  • This leads to the result:
$$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$
  • From this we obtain for the linear mean  $(k= 1)$:
$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$


(2)  The  $(k= 2)$  is  $m_2 = 8/3$.

  • From this follows with  "Steiner's theorem":
$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$


(3)  With  $m_1 = 4/3$,  $m_2 = 8/3$  and  $m_3 = 32/5$,  the given equation for the third order central moment gives:   $\mu_3 = 64/135 \approx 0.474$.

  • From this follows for the  "Charlier's skewness":
$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
  • Due to the asymmetric PDF:  $S_x \ne 0$.



(4)  Correct are  the proposed solutions 1, 3 and 4:

  • For symmetric PDF,  all odd moments are zero,  including the mean  $m_y$.
  • Therefore,  according  $y$:  There is no difference between the moments  $m_k$  and the central moments  $\mu_k$.
  • The moments  $m_k$  with even  $k$  are the same for the random variables  $x$  and  $y$.  This is evident from the time averages:
  • Since  $x^2(t) = y^2(t)$,  for  $k = 2n$  the moments are equal too:
$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$


(5)  With the result of the subtask  (2)  holds:

$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$


(6)  For symmetrical PDF,  the fourth-order central moment is equal to the moment  $m_4$.

  • From the general equation calculated in subtask  (1)  one obtains  $\mu_4 = 256/15.$
  • From this follows for the kurtosis:
$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
Note:   This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution  $(K = 1.8)$  and the Gaussian distribution  $(K = 3)$. This is a quantitative evaluation of the fact that here
  • the outliers are more pronounced than in the case of a uniformly distributed random size,
  • but due to the limitation less pronounced than with Gaussian sizes.
  • Then we will prove that the asymmetric triangular PDF  $f_x(x)$  has the same kurtosis as shown in the upper sketch on the data sheet:
$$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
  • With the result of the subtask  (3)    ⇒   $\sigma_x^2 = 8/9$  it follows:
$$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$